Zinc Alleviates Copper Toxicity to Lettuce and Oat in Copper-Contaminated Soils

Author(s):  
Jason W. Stuckey ◽  
Alexander Neaman ◽  
José Verdejo ◽  
Claudia Navarro-Villarroel ◽  
Patricia Peñaloza ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 58-63
Author(s):  
Syeda Fatima ◽  
Nazia Aslam ◽  
Sofia Khalid

Heavy metal contamination is one of the major problems prevailing in environment. Copper in high concentration is considered to have serious effects on plant growth parameters which results in chlorosis, disturbed mineral uptake and stunted growth. A pot experiment was conducted to evaluate the ability of Phlox drummondii to tolerate and accumulate high copper doses. Plants were exposed to copper toxicity at three different concentrations (10 ppm, 20 ppm and 30 ppm) by using copper sulfate (CuSO4.5H2O). Results showed that chlorophyll-a, chlorophyll-b, total chlorophyll and carotenoids of treated plants decreased significantly (p˂0.05) with the increase of copper concentration. Selected copper levels showed no effect on plant height, number of leaves, leaf area and ascorbic acid (p>0.05). Relative water content increased significantly (p˂0.05) as compared to control plants. Copper uptake by roots of treated plants was greater as compared to control plants indicating Phlox drummondii ability to grow well in the copper contaminated soils and could be classified as copper tolerant plant. Copper tolerance by phlox was associated with its capacity to absorb and accumulate in roots preventing translocation of metal to other photosynthetic tissues. Therefore, Phlox drummondii has the characteristic to be used as hyperaccumulator by vegetating in copper contaminated soils. Further studies at genetic level would play a key role in understanding the tolerance mechanism of Phlox drummondii towards copper contamination.


2015 ◽  
Vol 75 (4) ◽  
pp. 868-877 ◽  
Author(s):  
R. Andreazza ◽  
L. Bortolon ◽  
S. Pieniz ◽  
F. M. Bento ◽  
F. A. O. Camargo

Abstract Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg–1), roots (964 mg kg–1) and entire plants (1,106 mg kg–1). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha–1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation.


Chemosphere ◽  
2014 ◽  
Vol 117 ◽  
pp. 471-476 ◽  
Author(s):  
Mirca Zotti ◽  
Simone Di Piazza ◽  
Enrica Roccotiello ◽  
Gabriella Lucchetti ◽  
Mauro Giorgio Mariotti ◽  
...  

Soil Research ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 44 ◽  
Author(s):  
U. Pietrzak ◽  
N. C. Uren

Total copper concentrations in some Victorian vineyard soils, due to the use of copper (Cu)-based fungicides, have increased to the point where remedial strategies need to be considered to avoid Cu toxicity. In Australia, the National Environment Protection (Assessment of Site Contamination) Measure recommends that total Cu concentrations in soil exceeding the threshold concentration of 100 mg/kg require environmental investigation. However, it is likely that some Cu-contaminated soils, to be used for horticultural purposes, will need to be remediated even if the total Cu concentration is <100 mg/kg. This paper examines some prospective remedial strategies for Cu-contaminated vineyard soils and demonstrates that, apart from stopping the addition of Cu, in situ remedial strategies are the only practical remedial options for Cu-contaminated vineyard soils. Active mixing, both lateral and vertical, of contaminated surface soil with less contaminated or uncontaminated deeper soil is an in situ and well-suited remedial option for most low and medium Cu-contaminated vineyard soils. The strategy relies on attenuation processes to be more effective. Other ameliorative strategies with potential as remedial options for low and medium Cu-contaminated soils, including phytoremediation and attenuation (liming and addition of organic matter), are also considered.


2010 ◽  
Vol 29 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Jelle Mertens ◽  
Steven A. Wakelin ◽  
Kris Broos ◽  
Mike J. McLaughlin ◽  
Erik Smolders

Sign in / Sign up

Export Citation Format

Share Document