scholarly journals EFFECTS OF COPPER TOXICITY ON DIFFERENT GROWTH ATTRIBUTES OF PHLOX DRUMMONDII

2021 ◽  
Vol 5 (1) ◽  
pp. 58-63
Author(s):  
Syeda Fatima ◽  
Nazia Aslam ◽  
Sofia Khalid

Heavy metal contamination is one of the major problems prevailing in environment. Copper in high concentration is considered to have serious effects on plant growth parameters which results in chlorosis, disturbed mineral uptake and stunted growth. A pot experiment was conducted to evaluate the ability of Phlox drummondii to tolerate and accumulate high copper doses. Plants were exposed to copper toxicity at three different concentrations (10 ppm, 20 ppm and 30 ppm) by using copper sulfate (CuSO4.5H2O). Results showed that chlorophyll-a, chlorophyll-b, total chlorophyll and carotenoids of treated plants decreased significantly (p˂0.05) with the increase of copper concentration. Selected copper levels showed no effect on plant height, number of leaves, leaf area and ascorbic acid (p>0.05). Relative water content increased significantly (p˂0.05) as compared to control plants. Copper uptake by roots of treated plants was greater as compared to control plants indicating Phlox drummondii ability to grow well in the copper contaminated soils and could be classified as copper tolerant plant. Copper tolerance by phlox was associated with its capacity to absorb and accumulate in roots preventing translocation of metal to other photosynthetic tissues. Therefore, Phlox drummondii has the characteristic to be used as hyperaccumulator by vegetating in copper contaminated soils. Further studies at genetic level would play a key role in understanding the tolerance mechanism of Phlox drummondii towards copper contamination.

2010 ◽  
Vol 29 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Jelle Mertens ◽  
Steven A. Wakelin ◽  
Kris Broos ◽  
Mike J. McLaughlin ◽  
Erik Smolders

2018 ◽  
Vol 5 (1) ◽  
pp. 26-32
Author(s):  
Olamilekan L Awotedu ◽  
Paul O Ogunbamowo ◽  
Bolajoko F Awotedu ◽  
Ileri-Oluwa B Emmanuel

This study investigated the comparative phytotoxcity effect of heavy metal contamination on Jatropha curcas, Jatropha gossypifolia and Jatropha multifida in contaminated soil from a dump site in Ibadan Nigeria. Seeds of J. curcas, J. gossypifolia and J. multifida were planted in a germination tray and later transplanted into polythene pots filled with 2kg of either control soil or heavy metal contaminated soil, a 3 × 2 factorial experiment laid out in complete randomized design (CRD) replicated four times was adopted; treatments imposed include T1 – J. curcas/Control Soil, T2 – J. gossypifolia/Control Soil, T3 – J. multifida/Control Soil, T4 – J. curcas/Contaminated soil, T5 – J. gossypifolia/Contaminated Soil, and T6 – J. multifida/Contaminated Soil. Weekly variation in growth parameters: the plant height, leave production and stem diameter were measured over the course of 12 weeks. The growth parameters were dependent on a combination of both specie type and level of heavy metal contamination of soil. J. multifida (T3) (36.93cm) performed best, comparable with J. gossypiifolia (T2) (34.1cm) after 12 weeks while J. multifida (T6) had the lowest mean plant height (7.23cm) which is not significantly (p<0.05) different from other species on the contaminated soil; for leave production, J. gossypiifolia (T2) produced the highest mean number of leaves (9.67) which is comparable with J. multifida (T3) (9.00) and less so with J. curcas (T1) (6.67) with significant leave losses on the contaminated soils after 12 weeks; variation in stem diameter shows that J. curcas (T1) had the highest stem girth (1.96 mm) which is comparable to the value obtained for J. curcas (T4) (1.95mm), while J. multifida (T6) had the lowest stem girth (1.09 mm). J. gossypiifolia (T2) and J. multifida (T3) had comparable stem girth of 1.57mm and 1.47mm respectively. Toxicity of heavy metals in the contaminated soil greatly affect the growth parameters of the Jatropha.


Author(s):  
Jason W. Stuckey ◽  
Alexander Neaman ◽  
José Verdejo ◽  
Claudia Navarro-Villarroel ◽  
Patricia Peñaloza ◽  
...  

2017 ◽  
Vol 27 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Lidiia Samarina ◽  
Valentina Malyarovskaya ◽  
Yulija Abilfazova ◽  
Natalia Platonova ◽  
Kristina Klemeshova ◽  
...  

Structural and physiological responses of chrysanthemum to repeated osmotic stress were studied. Plants were cultured for 2 weeks (for each stress1 and stress 2) on half MS supplemented with mannitol 100 mM (Treatment I) and 200 mM (Treatment II). First stress inhibited growth parameters stronger than second stress in treatment I. In treatment II both stress events strongly inhibited growth parameters of micro‐shoots. Proline content exceeded control 6 ‐ 8 times after 1st stress, and 2 ‐ 5 times after the 2nd stress in treatments I and II, respectively. Soluble protein was accumulated in leaves during both stress exposures, and 2 ‐ 2.5 times exceeded control after the 2nd stress. Relative water content in both treatments increased after the 2nd stress exposure. In treatment II chlorophyll а and carotenoids contents were 8.78 and 4.62 mg/g comparing to control (4.21 and 2.25 mg/g, respectively) after the 1st stress. But after the 2nd stress there was no difference with control.Plant Tissue Cult. & Biotech. 27(2): 161-169, 2017 (December)


2015 ◽  
Vol 75 (4) ◽  
pp. 868-877 ◽  
Author(s):  
R. Andreazza ◽  
L. Bortolon ◽  
S. Pieniz ◽  
F. M. Bento ◽  
F. A. O. Camargo

Abstract Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg–1), roots (964 mg kg–1) and entire plants (1,106 mg kg–1). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha–1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation.


2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


Author(s):  
Kandhan Karthishwaran ◽  
Annadurai Senthilkumar ◽  
Wasef Ayed Alzayadneh ◽  
Mohammed Abdul Mohsen Alyafei

Date palm (Phoenix dactylifera L.) is a major plant grown under natural conditions in the Middle East and is subject to multiple environmental stresses. Increased concentration of atmospheric carbon dioxide (CO2) and ultraviolet-B (UV-B) irradiation in the growth environment can have a high impact on plant carbon accumulation, and the various factors can function in opposite directions or cause additive effects. The objective of the present investigation was to screen UAE date palm for susceptibility to elevated level of CO2, UVB and their combined effect on a date palm variety was assessed in transparent open - top chambers (OTC) conditions in the hot climate of UAE. After the screening of the cultivars, experiment was conducted in an OTC facility and the treatments were given for 120 days. After the treatment of the selected cultivar, content of chlorophyll a, b and total, carotenoids, protein, amino acids, phenol and activities including γ-glutamyl kinase, proline oxidase, a-tocopherol and peroxidases activity were determined. The results revealed that the high concentration of CO2 alone increased the growth parameters, whereas the treatment with UV-B significantly affected the growth of the plant relative to regulation. Enzyme observations have shown that an increase in antioxidant enzymes can affect a defense response to the abiotic stress-induced cellular damage. Further extension of this study with other cultivated varieties, other stress parameters and determination of yield parameters will give scope to identify new stress tolerant cultivars of date palm trees.


2019 ◽  
Vol 32 ◽  
pp. 282-290
Author(s):  
Nada A. El-Qatrani

This study was carried out in the nursery of Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah during 2018 growing season. Completely randomized blocks design (C.R.B.D.)  was used to investigate the effect of different concentrations of super swing (0, 0.5 and 1) g.l-1 and whey (0, 50 and 75) % and their interactions to enhance the growth parameters and chemical characteristics of Sour orange transplants. The results showed a significant increase in most of the measured growth parameters of transplants treated with high concentration of foliar spraying to both fertilizers. Application of super swing at 1 g.l-1 with whey at 75% together significantly increased the height of plant, the number of leaves, leaf area, the diameter of stem, number of flowers, the leaves content of both nitrogen and potassium, percentage of dry matter, and content of chlorophyll. Whereas, control treatment was significantly increased the water content compared to other treatments. Addition of growth-enhancing compounds such as super swing and whey extract to the plant can improve the metabolic performance and enhances the plant's ability to absorb nutrients from the soil.


Sign in / Sign up

Export Citation Format

Share Document