Ultra-trace detection of toxic heavy metal ions using graphitic carbon functionalized Co3O4 modified screen-printed electrode

2021 ◽  
Author(s):  
R. T. Yogeeshwari ◽  
R. Hari Krishna ◽  
Prashanth S. Adarakatti ◽  
S. Ashoka
2016 ◽  
Vol 16 (24) ◽  
pp. 8678-8684 ◽  
Author(s):  
Sai Guruva Reddy Avuthu ◽  
Jared Thomas Wabeke ◽  
Binu Baby Narakathu ◽  
Dinesh Maddipatla ◽  
Jaliya Samarakoon Arachchilage ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Suguna Perumal ◽  
Raji Atchudan ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Rajendran Suresh Babu ◽  
Petchimuthu Karpagavinayagam ◽  
...  

The growth of industry fulfills our necessity and promotes economic development. However, pollutants from such industries pollute water bodies which pose a high risk for living organisms. Thus, researchers have been urged to develop an efficient method to remove toxic heavy metal ions from water bodies. The adsorption method shows promising results for the removal of heavy metal ions and is easy to operate on a large scale, thus can be applied to practical applications. Numerous adsorbents were developed and reported, among them hydrogels, which attract great attention because of the reusability, ease of preparation, and handling. Hydrogels are generally prepared by the cross-linking of polymers that result in a three-dimensional structure, showing high porosity and high functionality. They are hydrophilic in nature because of the functional groups, and are non-toxic. Thus, this review provides various methods of hydrogel adsorbents preparation and summarizes recent progress in the use of hydrogel adsorbents for the removal of heavy metal ions. Further, the mechanism involved in the removal of heavy metal ions is briefly discussed. The most recent studies about the adsorption method for the treatment of heavy metal ions contaminated water are presented.


2019 ◽  
Vol 76 ◽  
pp. 02001
Author(s):  
Aamir Amanat Ali Khan ◽  
Huma Ajab ◽  
Asim Yaqub ◽  
Mohd Azmuddin Abdullah

Square-wave voltammetric stripping analysis is attractive for environmental monitoring and trace metal ion determination. The sensitivity is a result of analytes preconcentration steps on the electrode and advanced measurement procedures, where metal analytes are stripped away from the electrode at appropriate potential scan. Screen-printed electrode (SPE) has great advantages for in situ assays of heavy metal ions. Modification of SPE with bismuth (Bi) film improves the amalgamation of metal ions and the addition of hydroxyapatite (HA) increases the ion sorption, and enhances the current response due to the large porous structure and surface active sites for the metal ion binding. The ionization of the functional groups on the electrode surface upon contact with the aqueous system further assists the cation binding. The analytical performance of Bi and HA-modified SPE for simultaneous detection of Cd(II) and Pb(II) ions by square wave anodic stripping voltammetry (SWASV) was evaluated. Under the optimized electrochemical working conditions, calibration graph is linear for 240 s deposition time, in 0.1 M acetate buffer at pH 7.6 with the detection limit of 16.8 ppb for Pb(II). Two peaks corresponding to Cd(II) at -0.8 V and Pb(II) at -0.6 V can be discerned suggesting that Bi-HA modification had increased the current responses.


Sign in / Sign up

Export Citation Format

Share Document