toxic heavy metal
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 181)

H-INDEX

27
(FIVE YEARS 8)

2022 ◽  
pp. 81-114
Author(s):  
John Andraos ◽  
Albert S. Matlack

Author(s):  
Ling Zeng ◽  
Jinzhao Zhou ◽  
Yanwei Zhang ◽  
Xiaofei Wang ◽  
Mei Wang ◽  
...  

Cadmium (Cd) is a toxic heavy metal and ubiquitous environmental endocrine disruptor. Previous studies on Cd-induced damage to male fertility mainly focus on the structure and function of testis, including cytoskeleton, blood-testis barrier, and steroidogenesis. Nevertheless, to date, no studies have investigated the effects of Cd exposure on sperm epigenetic inheritance and intergenerational inheritance. In our study, we systematically revealed the changes in sperm tRNA-derived small RNAs (tsRNA) profiles and found that 14 tsRNAs (9 up-regulated and 5 down-regulated) were significantly altered after Cd exposure. Bioinformatics of tsRNA-mRNA-pathway interactions revealed that the altered biological functions mainly were related to ion transmembrane transport, lipid metabolism and cell membrane system. In addition, we focused on two stages of early embryo development and selected two organs to study the impact of these changes on cell membrane system, especially mitochondrion and lysosome, two typical membrane-enclosed organelles. Surprisingly, we found that the content of mitochondrion was significantly decreased in 2-cell stage, whereas remarkably increased in the morula stage. The contents of mitochondrion and lysosome were increased in the testes of 6-day-old offspring and livers of adult offspring, whereas remarkably decreased in the testes of adult offspring. This provides a possible basis to further explore the effects of paternal Cd exposure on offspring health.


Author(s):  
F Kargar-Shouroki ◽  
HR Mehri ◽  
F Sepahi-Zoeram

Introduction: Lead is a toxic heavy metal that has adverse health effects on blood parameters. About 80% of lead produced is used in batteries, especially vehicle batteries. Therefore, the present study aimed to assess the hematological changes, including total and differential white blood cell (WBC) counts in battery workers exposed to lead, and compare with the non-exposed group. Materials and Methods: This cross-sectional study was carried out in a battery industry in Semnan city. The study population consisted of 78 battery workers and 78 healthy non-exposed office workers. A hematology cell counter was used to determine the total, and differential WBC counts. Blood lead level was measured in accordance with the NIOSH method 8003. Results: Blood lead levels were about two times higher than the TLV recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) for this compound (20 µg/dl). The level of WBC (8.07± 2.55 mm3 blood×103 vs. 7.27 ± 1.58 mm3 blood×103) was significantly higher, while the level of monocyte was significantly lower (6.96 ± 1.72 % vs. 7.67 ± 1.87 %) in the exposed group than in the non-exposed group. After adjustment for potential confounders such as age and work history, a significant association between exposure to lead and WBC and monocyte levels was reported. Conclusion: The present study's findings indicated that exposure to lead was associated with total and differential white blood cells changes in the exposed group compared to the non-exposed group.


2021 ◽  
Vol 17 (6) ◽  
pp. 752-767
Author(s):  
Raja Norimie Raja Sulaiman ◽  
Norasikin Othman ◽  
Kissan Vithilingam

Supported liquid membrane (SLM) is one of the potential extraction methods for the treatment of wastewater containing various toxic heavy metal ions. Advantageously, this process offers simultaneous removal and recovery, as well as low energy consumption and operational cost. In this study, the prediction of nickel removal was investigated using a diffusion model developed through MATLAB. 


2021 ◽  
Vol 13 (4) ◽  
pp. 1283-1293
Author(s):  
Ramasubbu Dhana Ramalakshmi ◽  
Mahalingam Murugan ◽  
Vincent Jeyabal

Water contamination by toxic heavy metal ions causes a serious public health problem for humans. The present work reports the development of a new adsorbent of PsLw carbon-polyaniline composite by direct oxidation polymerisation of aniline with PsLw carbon for the removal of arsenic (As).  The structure and morphologies of the adsorbent were characterised by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The ability of the adsorbent for the removal of As(III) was estimated by batch and kinetic studies. The optimum adsorption behaviour of the adsorbent was measured at pH=6.0. The equilibrium process was found to be in good agreement with Langmuir adsorption isotherm and the maximum adsorption capacity was 98.8 mg/g for an initial concentration of 60 mg/L at 30 °C. The kinetic study followed pseudo-second-order kinetics. Thermodynamic parameters predict the spontaneous, feasible and exothermic nature of adsorption. Column operation was carried out to remove As(III) bulk and column data obeys the Thomas model. The results indicated that PsLw carbon-polyaniline composite can be employed as an efficient adsorbent than polyaniline for removal of As(III) from wastewater.


2021 ◽  
Vol 51 ◽  
Author(s):  
Muhammad Farrakh Nawaz ◽  
Muhammad Haroon U Rashid ◽  
Muhammad Zubair Arif ◽  
Muhammad Azeem Sabir ◽  
Taimoor Hassan Farooq ◽  
...  

Background: Air and soil pollution are among the main concerns in urban areas worldwide, and dust and heavy metals are major contributors to environmental pollution. Lead (Pb) is a highly toxic heavy metal that badly affects human health as well as plant's survival and growth. Vegetation can play an important role in ameliorating the effects of these pollutants. Eucalyptus camaldulensis is well adapted and cultivated throughout a wide range of urban environments from temperate to tropical climates. Methods: A 90 days experiment was conducted to investigate the effects of lead (Pb) and dust pollution on the growth performance of young E. camaldulensis plants. Four months old seedlings were treated with a factorial combinations of Pb (0,10 and 20 mg/l applied in irrigation) and dust levels (0,5 and 10 g applied on foliage). Results: All morphological traits (root length, shoot length, stem diameter) and biomass (root and shoot, fresh and dry mass) of E. camaldulensis were significantly reduced when exposed to higher Pb and dust levels. The highest Pb treatments exhibited greater Pb accumulation in plant roots (23.54 ± 1.61 mg/kg), shoots (15.53 ± 1.98 mg/kg), and leaves (13.89 ± 1.49 mg/kg). Dust load on leaves was greater (72.78 ± 8.1 mg/cm2) for those treatments with higher dust and Pb additions compared to the control (16.11 ± 2.0 mg/cm2). Chlorophyll content was greater at the start of the experiment (68.78 ± 0.74 mg.g-1FW) and progressively decreased over time consistently  with the increase of Pb and dust levels applied. Conclusions: The results of the experiment, suggest that E. camaldulensis could be successfully grown in minimum to moderate Pb and dust polluted urban environments.


2021 ◽  
Vol 100 (11) ◽  
pp. 1298-1302
Author(s):  
Munira M. Ziatdinova ◽  
Yana V. Valova ◽  
Guzel F. Mukhammadiyeva ◽  
Anna S. Fazlieva ◽  
Denis D. Karimov ◽  
...  

Introduction. Cadmium is a toxic heavy metal with devastating effects on most organ systems. After absorption, cadmium is transported throughout the body, primarily by binding to proteins by metallothioneins. It is believed that the mechanisms of cadmium-induced transformation arise due to the disruption of zinc-dependent cellular processes. This part is due to the structural and physical similarities between zinc and cadmium. More than half of the incoming cadmium is deposited in the liver and kidneys. The rest part is distributed throughout other organs and their systems. Materials and methods. In total, 40 white outbred rats of both sexes weighing 170-230 g were used in the experiment; they were formed into four experimental groups of 10 animals each, depending on the dose of the injected toxicant. Liver tissue samples were used as research materials, in the homogenate of which the quantitative content of Cd and Zn was determined, as well as the mRNA level of the MT1 and ZIP1 genes. Results. It was found that the most pronounced activity of the MT1 gene in liver tissues was achieved when animals were administered cadmium chloride at a dose of 0.1 mg/kg (2.69 ± 0.37; p = 0.017), while the multiplicity of expression of the ZIP1 gene showed the maximum value of the level of transcripts with the minimum dose of toxin (2.70 ± 0.37; p = 0.007). It was also revealed that the highest concentration of zinc in the liver tissue was observed with the introduction of cadmium chloride at a dose of 0.1 mg/kg (33.84 ± 0.53; p <0.001), and the concentration of cadmium increased along with an increase in the dose of the toxicant (0, 0049 ± 0.0003; 0.0203 ± 0.0024; 0.664 ± 0.007; 0.76 ± 0.0089). Conclusion. Thus, a comprehensive study of the expression of genes for metallothioneins and zinc transporters can be used as a biomarker of poisoning with cadmium and its compounds.


Sign in / Sign up

Export Citation Format

Share Document