Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon

2021 ◽  
Vol 197 ◽  
pp. 111110
Author(s):  
G. Bharath ◽  
Abdul Hai ◽  
K. Rambabu ◽  
Faheem Ahmed ◽  
Ahmed S. Haidyrah ◽  
...  
2020 ◽  
Vol 6 (2) ◽  
pp. 331-340 ◽  
Author(s):  
Cuijiao Zhao ◽  
Xinlei Wang ◽  
Shengbo Zhang ◽  
Na Sun ◽  
Hongjian Zhou ◽  
...  

Porous graphitic carbon nanosheets functionalized by ultrafine Fe3O4 NPs and amino-functionalized activated carbon were developed to construct a hybrids capacitive deionization for efficient removal of multiple heavy metal ions in water.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Suguna Perumal ◽  
Raji Atchudan ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Rajendran Suresh Babu ◽  
Petchimuthu Karpagavinayagam ◽  
...  

The growth of industry fulfills our necessity and promotes economic development. However, pollutants from such industries pollute water bodies which pose a high risk for living organisms. Thus, researchers have been urged to develop an efficient method to remove toxic heavy metal ions from water bodies. The adsorption method shows promising results for the removal of heavy metal ions and is easy to operate on a large scale, thus can be applied to practical applications. Numerous adsorbents were developed and reported, among them hydrogels, which attract great attention because of the reusability, ease of preparation, and handling. Hydrogels are generally prepared by the cross-linking of polymers that result in a three-dimensional structure, showing high porosity and high functionality. They are hydrophilic in nature because of the functional groups, and are non-toxic. Thus, this review provides various methods of hydrogel adsorbents preparation and summarizes recent progress in the use of hydrogel adsorbents for the removal of heavy metal ions. Further, the mechanism involved in the removal of heavy metal ions is briefly discussed. The most recent studies about the adsorption method for the treatment of heavy metal ions contaminated water are presented.


2021 ◽  
Vol 221 ◽  
pp. 239-251
Author(s):  
Syed Muhammad Salman ◽  
Fouzia Kamal ◽  
Muhammad Zahoor ◽  
Muhammad Wahab ◽  
Durr e Shahwar ◽  
...  

2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1973-1973
Author(s):  
Ying Wang ◽  
Daniel J Blackwood

Increasing demand for the limited resource of fresh water for the large urban populations and development of agriculture and industry draws public concern. Removal of heavy metals such as lead, cadmium, chromium and mercury is crucial in environmental improvement of water and industrial wastewater treatment. Great efforts have been made through chemical precipitation, adsorption, ion exchange, filtration and electrochemical treatment. However, a large volume of sludge residue, expensive and complex matrix materials and low efficiency are still problems that need to be improved. Capacitive deionization (CDI) is a promising energy-efficient technology for water desalination, which is easy to handle and environmentally friendly producing no secondary contaminants through the water purifying process [1]. In order to effectively remove ions, the porous electrodes with large surface area, good chemical stability, high electronic conductivity, and hydrophility are key factors in the selection of CDI materials. Highly porous carbon materials represent the typical electrodes to store the ions through surface ion adsorption/desorption, which is generally categorized as electrochemical double layer. By contrast, pseudocapacitors that consist of conducting polymers and transition metals, store more charge through redox reactions. Among the alternative candidates, the natural abundant and environmental benign MnO2 is of particular interest for research, due to its high theoretical specific capacitance and the ability to be use in mild aqueous electrolytes which expand its practical application [2-3]. MnO2 can be fabricated easily and its morphology can be controlled during simple hydrothermal growth processes. Direct growth on carbon cloth, which is an excellent flexible and conductive substrate, could enhance the regeneration and reuse property of MnO2 as an ideal CDI electrode. Porous MnO2@cabon cloth composites were prepared via a facile hydrothermal method (Figure a). The BET result showed that the average pore width is 18.2 nm. To investigate the CDI property of removing the heavy metal ions, one piece of MnO2@CC and one piece of activated carbon@graphite paper were assembled as working and counter electrodes respectively. This work confirmed the potential of using MnO2@CC as a good CDI electrode material for removal of heavy metal ions from water (Figure b). References S. Porada, R. Zhao, A. Wal, V. Presser, and P. M. Biesheuvel, Prog. Mater. Sci., 58, 1388 (2013). W. Wei, X. Cui, W. Chen, and D. G. Ivey, Chem. Soc. Rev., 40, 1697 (2011). J. Wang, F. Kang, and B. Wei, Prog. Mater. Sci., 74, 51 (2015). Figure 1


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 241 ◽  
Author(s):  
Jian Guo ◽  
Yaqin Song ◽  
Xiaoyang Ji ◽  
Lili Ji ◽  
Lu Cai ◽  
...  

The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon (K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM. The results showed that as-produced K-Ac samples were a porous material with microporous and mesoporous structures and had a high specific surface area of 3160 m2/g, average pore size of about 10 nm, and large pore volume of 2.38 m3/g. Furthermore, batches of K-Ac samples were employed for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration, and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally, the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained.


Sign in / Sign up

Export Citation Format

Share Document