Sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on muscle tissue transaminases of Oreochromis niloticus in vivo

Author(s):  
Muhammad Amin ◽  
Masarrat Yousuf ◽  
Naveed Ahmad ◽  
Mohammad Attaullah ◽  
Muhammad Ikram ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stéphane Perrier ◽  
Eléonore Moreau ◽  
Caroline Deshayes ◽  
Marine El-Adouzi ◽  
Delphine Goven ◽  
...  

AbstractIn the malaria vector Anopheles gambiae, two point mutations in the acetylcholinesterase (ace-1R) and the sodium channel (kdrR) genes confer resistance to organophosphate/carbamate and pyrethroid insecticides, respectively. The mechanisms of compensation that recover the functional alterations associated with these mutations and their role in the modulation of insecticide efficacy are unknown. Using multidisciplinary approaches adapted to neurons isolated from resistant Anopheles gambiae AcerKis and KdrKis strains together with larval bioassays, we demonstrate that nAChRs, and the intracellular calcium concentration represent the key components of an adaptation strategy ensuring neuronal functions maintenance. In AcerKis neurons, the increased effect of acetylcholine related to the reduced acetylcholinesterase activity is compensated by expressing higher density of nAChRs permeable to calcium. In KdrKis neurons, changes in the biophysical properties of the L1014F mutant sodium channel, leading to enhance overlap between activation and inactivation relationships, diminish the resting membrane potential and reduce the fraction of calcium channels available involved in acetylcholine release. Together with the lower intracellular basal calcium concentration observed, these factors increase nAChRs sensitivity to maintain the effect of low concentration of acetylcholine. These results explain the opposite effects of the insecticide clothianidin observed in AcerKis and KdrKis neurons in vitro and in vivo.


2020 ◽  
Vol 223 (16) ◽  
pp. jeb214890
Author(s):  
Ebtesam Ali Barnawi ◽  
Justine E. Doherty ◽  
Patrícia Gomes Ferreira ◽  
Jonathan M. Wilson

ABSTRACTPotassium regulation is essential for the proper functioning of excitable tissues in vertebrates. The H+/K+-ATPase (HKA), which is composed of the HKα1 (gene: atp4a) and HKβ (gene: atp4b) subunits, has an established role in potassium and acid–base regulation in mammals and is well known for its role in gastric acidification. However, the role of HKA in extra-gastric organs such as the gill and kidney is less clear, especially in fishes. In the present study in Nile tilapia, Oreochromis niloticus, uptake of the K+ surrogate flux marker rubidium (Rb+) was demonstrated in vivo; however, this uptake was not inhibited with omeprazole, a potent inhibitor of the gastric HKA. This contrasts with gill and kidney ex vivo preparations, where tissue Rb+ uptake was significantly inhibited by omeprazole and SCH28080, another gastric HKA inhibitor. The cellular localization of this pump in both the gill and kidney was demonstrated using immunohistochemical techniques with custom-made antibodies specific for Atp4a and Atp4b. Antibodies against the two subunits showed the same apical ionocyte distribution pattern in the gill and collecting tubules/ducts in the kidney. Atp4a antibody specificity was confirmed by western blotting. RT-PCT was used to confirm the expression of both subunits in the gill and kidney. Taken together, these results indicate for the first time K+ (Rb+) uptake in O. niloticus and that HKA is implicated, as shown through the ex vivo uptake inhibition by omeprazole and SCH28080, verifying a role for HKA in K+ absorption in the gill's ionocytes and collecting tubule/duct segments of the kidney.


2012 ◽  
Vol 42 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Chris W. Coppin ◽  
Colin J. Jackson ◽  
Tara Sutherland ◽  
Peter J. Hart ◽  
Alan L. Devonshire ◽  
...  

1997 ◽  
Vol 16 (4) ◽  
pp. 212-216 ◽  
Author(s):  
Alison F Lailey

1 Perfluoroisobutene, a pyrolysis product of polytetra fluoroethene may cause pulmonary oedema and death when inhaled. Oral N-acetylcysteine has shown protection against inhalation of perfluoroisobutene and in this study we have tried to elucidate the mechanism by which protection is mediated. 2 Protection against the lethal effects of inhaled per fluoroisobutene has been shown when N-acetylcys teine has been orally administered 4, 6 or 8 h before gas exposure. 3 Plasma levels of cysteine, glutathione and N-acetylcys teine were increased for up to 7 h following oral administration of Nac. 4 N-acetylcysteine was not detected in the bronchio alveolar lavage fluid following oral administration. 5 Duration of protection in vivo has been related to the duration of increased thiol levels in the plasma.


Sign in / Sign up

Export Citation Format

Share Document