scholarly journals State of the art review of new technologies in spine deformity surgery–robotics and navigation

2021 ◽  
Author(s):  
J. Alex Sielatycki ◽  
Kristen Mitchell ◽  
Eric Leung ◽  
Ronald A. Lehman

Abstract Study design/methods Review article. Objectives The goal of this article is to review the available evidence for computerized navigation and robotics as an accuracy improvement tool for spinal deformity surgery, as well as to consider potential complications, impact on clinical outcomes, radiation exposure, and costs. Summary of background data/results Pedicle screw and rod construct are widely utilized for posterior spinal fixation in spinal deformity correction. Freehand placement of pedicle screws has long been utilized, although there is variable potential for inaccuracy depending on surgeon skill and experience. Malpositioned pedicle screws may have significant clinical implications ranging from nerve root irritation, inadequate fixation, CSF leak, perforation of the great vessels, or spinal cord damage. Computer-based navigation and robotics systems were developed to improve pedicle screw insertion accuracy and consistency, and decrease the risk of malpositioned pedicle fixation. The available evidence suggests that computer-based navigation and robotic-assisted guidance systems for pedicle cannulation are at least equivalent, and in several reports superior, to freehand techniques in terms of accuracy. CT and robotic navigation systems do appear to decrease radiation exposure to the operative team in some reports. Published reports do indicate longer operative times with use of robotic navigation compared with traditional freehand techniques for pedicle screw placement. To date, there is no conclusive evidence that use of CT or robotic navigation has any measurable impact on patient outcomes or overall complication reduction. There are theoretical advantages with robotic and CT navigation in terms of both speed and accuracy for severe spinal deformity or complex revision cases, however, there is a need for studies to investigate this technology in these specific cases. There is no evidence to date demonstrating the cost effectiveness of CT or robotic navigation as compared with traditional pedicle cannulation techniques. Conclusions The review of available evidence suggests that computer-based navigation and robotic-assisted guidance systems for pedicle cannulation are at least equivalent, and in several reports superior, to freehand techniques in terms of radiographic accuracy. There is no current clinical evidence that the use of navigation or robotic techniques leads to improved patient outcomes or decreased overall complications or reoperation rates, and the use of these systems may substantially increase surgical costs. Level of evidence V.

2021 ◽  
pp. 155633162110278
Author(s):  
Kyle W. Morse ◽  
Hila Otremski ◽  
Kira Page ◽  
Roger F. Widmann

Introduction: Pediatric spinal deformity involves a complex 3-dimensional (3D) deformity that increases the risk of pedicle screw placement due to the close proximity of neurovascular structures. To increase screw accuracy, improve patient safety, and minimize surgical complications, the placement of pedicle screws is evolving from freehand techniques to computer-assisted navigation and to the introduction of robotic-assisted placement. Purpose: The aim of this review was to review the current literature on the use of robotic navigation in pediatric spinal deformity surgery to provide both an error analysis of these techniques and to provide recommendations to ensure its safe application. Methods: A narrative review was conducted in April 2021 using the MEDLINE (PubMed) database. Studies were included if they were peer-reviewed retrospective or prospective studies, included pediatric patients, included a primary diagnosis of pediatric spine deformity, utilized robotic-assisted spinal surgery techniques, and reported thoracic or lumbar pedicle screw breach rates or pedicle screw malpositioning. Results: In the few studies published on the use of robotic techniques in pediatric spinal deformity surgery, several found associations between the technology and increased rates of screw placement accuracy, reduced rates of breach, and minimal complications. All were retrospective studies. Conclusions: Current literature is of a low level of evidence; nonetheless, the findings suggest the accuracy and safety of robotic-assisted spinal surgery in pediatric pedicle screw placement. The introduction of robotics may drive further advances in less invasive pediatric spinal deformity surgery. Further study is warranted.


2014 ◽  
Vol 20 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Alexander Mason ◽  
Renee Paulsen ◽  
Jason M. Babuska ◽  
Sharad Rajpal ◽  
Sigita Burneikiene ◽  
...  

Object Several retrospective studies have demonstrated higher accuracy rates and increased safety for navigated pedicle screw placement than for free-hand techniques; however, the accuracy differences between navigation systems has not been extensively studied. In some instances, 3D fluoroscopic navigation methods have been reported to not be more accurate than 2D navigation methods for pedicle screw placement. The authors of this study endeavored to identify if 3D fluoroscopic navigation methods resulted in a higher placement accuracy of pedicle screws. Methods A systematic analysis was conducted to examine pedicle screw insertion accuracy based on the use of 2D, 3D, and conventional fluoroscopic image guidance systems. A PubMed and MEDLINE database search was conducted to review the published literature that focused on the accuracy of pedicle screw placement using intraoperative, real-time fluoroscopic image guidance in spine fusion surgeries. The pedicle screw accuracy rates were segregated according to spinal level because each spinal region has individual anatomical and morphological variations. Descriptive statistics were used to compare the pedicle screw insertion accuracy rate differences among the navigation methods. Results A total of 30 studies were included in the analysis. The data were abstracted and analyzed for the following groups: 12 data sets that used conventional fluoroscopy, 8 data sets that used 2D fluoroscopic navigation, and 20 data sets that used 3D fluoroscopic navigation. These studies included 1973 patients in whom 9310 pedicle screws were inserted. With conventional fluoroscopy, 2532 of 3719 screws were inserted accurately (68.1% accuracy); with 2D fluoroscopic navigation, 1031 of 1223 screws were inserted accurately (84.3% accuracy); and with 3D fluoroscopic navigation, 4170 of 4368 screws were inserted accurately (95.5% accuracy). The accuracy rates when 3D was compared with 2D fluoroscopic navigation were also consistently higher throughout all individual spinal levels. Conclusions Three-dimensional fluoroscopic image guidance systems demonstrated a significantly higher pedicle screw placement accuracy than conventional fluoroscopy or 2D fluoroscopic image guidance methods.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kyle W. Morse ◽  
Madison Heath ◽  
Fedan Avrumova ◽  
Christopher Defrancesco ◽  
Peter D. Fabricant ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 496-502 ◽  
Author(s):  
Erik Edström ◽  
Gustav Burström ◽  
Rami Nachabe ◽  
Paul Gerdhem ◽  
Adrian Elmi Terander

Abstract BACKGROUND Treatment of several spine disorders requires placement of pedicle screws. Detailed 3-dimensional (3D) anatomic information facilitates this process and improves accuracy. OBJECTIVE To present a workflow for a novel augmented-reality-based surgical navigation (ARSN) system installed in a hybrid operating room for anatomy visualization and instrument guidance during pedicle screw placement. METHODS The workflow includes surgical exposure, imaging, automatic creation of a 3D model, and pedicle screw path planning for instrument guidance during surgery as well as the actual screw placement, spinal fixation, and wound closure and intraoperative verification of the treatment results. Special focus was given to process integration and minimization of overhead time. Efforts were made to manage staff radiation exposure avoiding the need for lead aprons. Time was kept throughout the procedure and subdivided to reflect key steps. The navigation workflow was validated in a trial with 20 cases requiring pedicle screw placement (13/20 scoliosis). RESULTS Navigated interventions were performed with a median total time of 379 min per procedure (range 232-548 min for 4-24 implanted pedicle screws). The total procedure time was subdivided into surgical exposure (28%), cone beam computed tomography imaging and 3D segmentation (2%), software planning (6%), navigated surgery for screw placement (17%) and non-navigated instrumentation, wound closure, etc (47%). CONCLUSION Intraoperative imaging and preparation for surgical navigation totaled 8% of the surgical time. Consequently, ARSN can routinely be used to perform highly accurate surgery potentially decreasing the risk for complications and revision surgery while minimizing radiation exposure to the staff.


Neurosurgery ◽  
2011 ◽  
Vol 68 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Scott L. Parker ◽  
Matthew J. McGirt ◽  
S Harrison. Farber ◽  
Anubhav G. Amin ◽  
Anne-Marie. Rick ◽  
...  

Abstract BACKGROUND: Pedicle screws are used to stabilize all 3 columns of the spine, but can be technically demanding to place. Although intraoperative fluoroscopy and stereotactic-guided techniques slightly increase placement accuracy, they are also associated with increased radiation exposure to patient and surgeon as well as increased operative time. OBJECTIVE: To describe and critically evaluate our 7-year institutional experience with placement of pedicle screws in the thoracic and lumbar spine using a free-hand technique. METHODS: We retrospectively reviewed records of all patients undergoing free-hand pedicle screw placement without fluoroscopy in the thoracic or lumbar spine between June 2002 and June 2009. Incidence and extent of cortical breach by misplaced pedicle screw was determined by review of postoperative computed tomography scans. We defined breach as more than 25% of the screw diameter residing outside of the pedicle or vertebral body cortex. RESULTS: A total of 964 patients received 6816 free-hand placed pedicle screws in the thoracic or lumbar spine. Indications for hardware placement were degenerative/deformity disease (51.2%), spondylolisthesis (23.7%), tumor (22.7%), trauma (11.3%), infection (7.6%), and congenital (0.9%). A total of 115 screws (1.7%) were identified as breaching the pedicle in 87 patients (9.0%). Breach occurred more frequently in the thoracic than the lumbar spine (2.5% and 0.9%, respectively; P < .0001) and was more often lateral (61.3%) than medial (32.8%) or superior (2.5%). T4 (4.1%) and T6 (4.0%) experienced the highest breach rate, whereas L5 and S1 had the lowest breach rate. Eight patients (0.8%) underwent revision surgery to correct malpositioned screws. CONCLUSION: Free-hand pedicle screw placement based on external anatomy alone can be performed with acceptable safety and accuracy and allows avoidance of radiation exposure encountered in fluoroscopic techniques. Image-guided assistance may be most valuable when placing screws between T4 and T6, where breach rates are highest.


2019 ◽  
Vol 30 (6) ◽  
pp. 807-813
Author(s):  
Vibhu K. Viswanathan ◽  
Amy J. Minnema ◽  
Stephanus Viljoen ◽  
H. Francis Farhadi

Sublaminar implants that encircle cortical bone are well-established adjuncts to pedicle screw-rod constructs in pediatric deformity surgery. Sublaminar bands (SLBs) in particular carry the advantage of relatively greater bone contact surface area as compared to wires and pullout loads that are independent of bone mineral density, in contrast to pedicle screws. Whereas the relevant technical considerations have been reported for pediatric deformity correction, an understanding of the relative procedural specifics of these techniques is missing for adult spinal deformity (ASD), despite several case series that have used distinct posterior tethering techniques for proximal junctional kyphosis prevention. In this paper, the authors summarize the relevant literature and describe a novel technique wherein bilateral tensioned SLBs are introduced at the nonfused proximal junctional level of long-segment ASD constructs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Po-Chen Chen ◽  
Chien-Chun Chang ◽  
Hsien-Te Chen ◽  
Chia-Yu Lin ◽  
Tsung-Yu Ho ◽  
...  

Background. The pedicle screw is one of the main tools used in spinal deformity correction surgery. Robotic and navigated surgeries are usually used, and they provide superior accuracy in pedicle screw placement than free-hand and fluoroscopy-guided techniques. However, their high cost and space limitation are problematic. We provide a new solution using 3D printing technology to facilitate spinal deformity surgery. Methods. A workflow was developed to assist spinal deformity surgery using 3D printing technology. The trajectory and profile of pedicle screws were determined on the image system by the surgical team. The engineering team designed drill templates based on the bony surface anatomy and the trajectory of pedicle screws. Their effectiveness and safety were evaluated during a preoperative simulation surgery. The surgery consisted in making a pilot hole through the drill template on a computed tomography- (CT-) based, full-scale 3D spine model for every planned segment. Somatosensory evoke potential (SSEP) and motor evoke potential (MEP) were used for intraoperative neurophysiological monitoring. Postoperative CT was obtained 6 months after the correction surgery to confirm the screw accuracy. Results. From July 2015 to November 2016, we performed 10 spinal deformity surgeries with 3D printing technology assistance. In total, 173 pedicle screws were implanted using drill templates. No notable change in SSEP and MEP or neurologic deficit was noted. Based on postoperative CT scans, the acceptable rate was 97.1% (168/173). We recorded twelve pedicle screws with medial breach, six with lateral breach, and five with inferior breach. Medial breach (12/23) was the main type of penetration. Lateral breach occurred mostly in the concave side (5/6). Most penetrations occurred above the T8 level (69.6%, 16/23). Conclusion. 3D printing technology provides an effective alternative for spinal deformity surgery when expensive medical equipment, such as intraoperative navigation and robotic systems, is unavailable.


2021 ◽  
Vol 10 (24) ◽  
pp. 5725
Author(s):  
Mirza Pojskić ◽  
Miriam Bopp ◽  
Christopher Nimsky ◽  
Barbara Carl ◽  
Benjamin Saβ

Background: Robot-guided spine surgery is based on a preoperatively planned trajectory that is reproduced in the operating room by the robotic device. This study presents our initial experience with thoracolumbar pedicle screw placement using Brainlab’s Cirq® surgeon-controlled robotic arm (BrainLab, Munich, Germany). Methods: All patients who underwent robotic-assisted implantation of pedicle screws in the thoracolumbar spine were included in the study. Our workflow, consisting of preoperative imagining, screw planning, intraoperative imaging with automatic registration, fusion of the preoperative and intraoperative imaging with a review of the preplanned screw trajectories, robotic-assisted insertion of K-wires, followed by a fluoroscopy-assisted insertion of pedicle screws and control iCT scan, is described. Results: A total of 12 patients (5 male and 7 females, mean age 67.4 years) underwent 13 surgeries using the Cirq® Robotic Alignment Module for thoracolumbar pedicle screw implantation. Spondylodiscitis, metastases, osteoporotic fracture, and spinal canal stenosis were detected. A total of 70 screws were implanted. The mean time per screw was 08:27 ± 06:54 min. The mean time per screw for the first 7 surgeries (first 36 screws) was 16:03 ± 09:32 min and for the latter 6 surgeries (34 screws) the mean time per screw was 04:35 ± 02:11 min (p < 0.05). Mean entry point deviation was 1.9 ± 1.23 mm, mean deviation from the tip of the screw was 2.61 ± 1.6 mm and mean angular deviation was 3.5° ± 2°. For screw-placement accuracy we used the CT-based Gertzbein and Robbins System (GRS). Of the total screws, 65 screws were GRS A screws (92.85%), one screw was a GRS B screw, and two further screws were grade C. Two screws were D screws (2.85%) and underwent intraoperative revision. There were no perioperative deficits. Conclusion: Brainlab’s Cirq® Robotic Alignment surgeon-controlled robotic arm is a safe and beneficial method for accurate thoracolumbar pedicle screw placement with high accuracy.


2016 ◽  
Vol 4 (2) ◽  
pp. 37-44
Author(s):  
Nurbek N Nadirov ◽  
Sergei M Belyanchikov ◽  
Dmitriy N Kokushin ◽  
Vladislav V Murashko ◽  
Kirill A Kartavenko

Aim.To compare the results of surgical correction of spinal deformity in children with idiopathic thoracic scoliosis with the use of transpedicular screw spinal systems with different pedicle screw placement.Material and methods.Thirty-one patients (14–17 years) with spinal curvature with a Cobb angle from 40° to 79° were operated on. Surgical correction of the deformity was performed using two methods, depending on the possible placement of a pedicle screw. The first group included 16 patients for whom the transpedicular support elements were placed on both sides, throughout the completely deformed spine. The second group included 15 patients for whom the pedicle screws were not placed for two or more vertebrae on the concave side of the curve, at the top of the main curve.Results.The mean percent correction of the spinal deformity for the first and second groups was 92.5% and 82.6%, respectively. The mean percentage of derotation of the apical vertebra for the first and second groups was 73.9% and 23%, respectively.Conclusion.The use of data based on the anatomical and anthropometric features of the vertebral body with scoliosis facilitates selection of the best option for correction of thoracic curve in children with idiopathic scoliosis using pedicle multi-support metal construction. The use of the spinal pedicle system for correction of spinal deformity in children with idiopathic scoliosis enabled a uniform load distribution along the support elements of the metal construction and maintained the correction in the late postoperative follow-up period.


Sign in / Sign up

Export Citation Format

Share Document