scholarly journals The atypical neuroleptics iloperidone and lurasidone inhibit human cytochrome P450 enzymes in vitro. Evaluation of potential metabolic interactions

2020 ◽  
Vol 72 (6) ◽  
pp. 1685-1694 ◽  
Author(s):  
Przemysław J. Danek ◽  
Jacek Wójcikowski ◽  
Władysława A. Daniel

Abstract Background The present study aimed at examining the inhibitory effect of two atypical neuroleptics iloperidone and lurasidone on the main human cytochrome P450 (CYP) enzymes in pooled human liver microsomes and cDNA-expressed CYP enzymes (supersomes). Methods The activity of these enzymes was determined by the following CYP-specific reactions: caffeine 3-N-demethylation/CYP1A2, diclofenac 4′-hydroxylation/CYP2C9, perazine N-demethylation/CYP2C19, bufuralol 1′-hydroxylation/CYP2D6 and testosterone 6β-hydroxylation/CYP3A4, respectively, using HPLC. Results Iloperidone inhibited the activity of CYP3A4 via a noncompetitive mechanism (Ki = 0.38 and 0.3 µM in liver microsomes and supersomes, respectively) and CYP2D6 via a competitive mechanism (Ki = 2.9 and 10 µM in microsomes and supersomes). Moreover, iloperidone attenuated the activity of CYP1A2 (Ki = 45 and 31 µM in microsomes and supersomes) and CYP2C19 via a mixed mechanism (Ki = 6.5 and 32 µM in microsomes and supersomes) but did not affect CYP2C9. Lurasidone moderately inhibited CYP1A2 (Ki = 12.6 and 15.5 µM in microsomes and supersomes), CYP2C9 (Ki = 18 and 3.5 µM in microsomes and supersomes) and CYP2C19 via a mixed mechanism (Ki = 18 and 18.4 µM in microsomes and supersomes), and CYP3A4 via a competitive mechanism (Ki = 29.4 and 9.1 µM in microsomes and supersomes). Moreover, lurasidone competitively, though weakly diminished the CYP2D6 activity (Ki = 37.5 and 85 µM in microsomes and supersomes). Conclusion The examined neuroleptics showed inhibitory effects on different CYP enzymes. The obtained results indicate that metabolic/pharmacokinetic interactions with iloperidone (involving mainly CYP3A4 and CYP2D6) and possibly with lurasidone (involving CYP1A2, CYP2C9 or CYP2C19) may occur during combined therapy.

2017 ◽  
Vol 9 (7) ◽  
pp. 163-177
Author(s):  
Dominik Dahlinger ◽  
Sevinc Aslan ◽  
Markus Pietsch ◽  
Sebastian Frechen ◽  
Uwe Fuhr

Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/ in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations.


2008 ◽  
Vol 53 (2) ◽  
pp. 541-551 ◽  
Author(s):  
Seongwook Jeong ◽  
Phuong D. Nguyen ◽  
Zeruesenay Desta

ABSTRACT Voriconazole is an effective antifungal drug, but adverse drug-drug interactions associated with its use are of major clinical concern. To identify the mechanisms of these interactions, we tested the inhibitory potency of voriconazole with eight human cytochrome P450 (CYP) enzymes. Isoform-specific probes were incubated with human liver microsomes (HLMs) (or expressed CYPs) and cofactors in the absence and the presence of voriconazole. Preincubation experiments were performed to test mechanism-based inactivation. In pilot experiments, voriconazole showed inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A (half-maximal [50%] inhibitory concentrations, <6 μM); its effect on CYP1A2, CYP2A6, CYP2C8, and CYP2D6 was marginal (<25% inhibition at 100 μM voriconazole). Further detailed experiments with HLMs showed that voriconazole is a potent competitive inhibitor of CYP2B6 (Ki < 0.5), CYP2C9 (Ki = 2.79 μM), and CYP2C19 (Ki = 5.1 μM). The inhibition of CYP3A by voriconazole was explained by noncompetitive (Ki = 2.97 μM) and competitive (Ki = 0.66 μM) modes of inhibition. Prediction of the in vivo interaction of voriconazole from these in vitro data suggests that voriconazole would substantially increase the exposure of drugs metabolized by CYP2B6, CYP2C9, CYP2C19, and CYP3A. Clinicians should be aware of these interactions and monitor patients for adverse effects or failure of therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Li ◽  
Ying-Yuan Lu ◽  
Jun Jia ◽  
Meng Fang ◽  
Lin Zhao ◽  
...  

Cytochrome P450 (CYP) is the most important phase I drug-metabolizing enzyme, and the effect of drugs on CYP enzymes can lead to decreased pharmacological efficacy or enhanced toxicity of drugs, but there are many deficiencies in the evaluation models of CYP enzymes in vitro. Human-induced hepatocytes (hiHeps) derived from human fibroblasts by transdifferentiation have mature hepatocyte characteristics. The aim was to establish a novel evaluation system for the effect of drugs on CYP3A4, 1A2, 2B6, 2C9, and 2C19 in vitro based on hiHeps. Curcumin can inhibit many CYP enzymes in vitro, and so the inhibition of curcumin on CYP enzymes was compared by human liver microsomes, human hepatocytes, and hiHeps using UPLC-MS and the cocktail method. The results showed that the IC50 values of CYP enzymes in the hiHeps group were similar to those in the hepatocytes group, which proved the effectiveness and stability of the novel evaluation system in vitro. Subsequently, the evaluation system was applied to study the inhibitory activity of notoginseng total saponins (NS), safflower total flavonoids (SF), and the herb pair of NS–SF on five CYP enzymes. The mechanism of improving efficacy after NS and SF combined based on CYP enzymes was elucidated in vitro. The established evaluation system will become a powerful tool for the research of the effect of drugs on the activity of CYP enzymes in vitro, which has broad application prospects in drug research.


2005 ◽  
Vol 37 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Arun K. Agrawal ◽  
Cornelis E.C.A. Hop ◽  
Jianmei Pang ◽  
Maria V. Silva Elipe ◽  
Ranjit C. Desai ◽  
...  

Phytomedicine ◽  
2017 ◽  
Vol 31 ◽  
pp. 1-9 ◽  
Author(s):  
A.K.M. Mahmudul Haque ◽  
Kok Hoong Leong ◽  
Yoke Lin Lo ◽  
Khalijah Awang ◽  
Noor Hasima Nagoor

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


2008 ◽  
Vol 36 (8) ◽  
pp. 1637-1649 ◽  
Author(s):  
Robin E. Pearce ◽  
Wei Lu ◽  
YongQiang Wang ◽  
Jack P. Uetrecht ◽  
Maria Almira Correia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document