scholarly journals Computer-Aided Diagnosis for Pneumoconiosis Staging Based on Multi-scale Feature Mapping

Author(s):  
Yuan Zhang

AbstractIn this research, we explored a method of multi-scale feature mapping to pre-screen radiographs quickly and accurately in the aided diagnosis of pneumoconiosis staging. We utilized an open dataset and a self-collected dataset as research datasets. We proposed a multi-scale feature mapping model based on deep learning feature extraction technology for detecting pulmonary fibrosis and a discrimination method for pneumoconiosis staging. The diagnostic accuracy was evaluated using under the curve (AUC) of the receiver operating characteristic (ROC) curve. The AUC value of our model was 0.84, which showed the best performance compared with previous work on datasets. The diagnosis results indicated that our method was highly consistent with that of clinical experts on real patient. Furthermore, the AUC value obtained through categories I–IV on the testing dataset demonstrated that categories I (AUC = 0.86) and IV (AUC = 0.82) obtained the best performance and achieved the level of clinician categorization. Our research could be applied to the pre-screening and diagnosis of pneumoconiosis in the clinic.

2019 ◽  
Vol 1302 ◽  
pp. 032019
Author(s):  
Yun Jiang ◽  
Junping Ren ◽  
Jize Xiao ◽  
Hai Zhang ◽  
Xiufang Chen

2021 ◽  
Vol 13 (20) ◽  
pp. 4180
Author(s):  
Jing Zhang ◽  
Minhao Shao ◽  
Zekang Wan ◽  
Yunsong Li

Hyperspectral Image (HSI) can continuously cover tens or even hundreds of spectral segments for each spatial pixel. Limited by the cost and commercialization requirements of remote sensing satellites, HSIs often lose a lot of information due to insufficient image spatial resolution. For the high-dimensional nature of HSIs and the correlation between the spectra, the existing Super-Resolution (SR) methods for HSIs have the problems of excessive parameter amount and insufficient information complementarity between the spectra. This paper proposes a Multi-Scale Feature Mapping Network (MSFMNet) based on the cascaded residual learning to adaptively learn the prior information of HSIs. MSFMNet simplifies each part of the network into a few simple yet effective network modules. To learn the spatial-spectral characteristics among different spectral segments, a multi-scale feature generation and fusion Multi-Scale Feature Mapping Block (MSFMB) based on wavelet transform and spatial attention mechanism is designed in MSFMNet to learn the spectral features between different spectral segments. To effectively improve the multiplexing rate of multi-level spectral features, a Multi-Level Feature Fusion Block (MLFFB) is designed to fuse the multi-level spectral features. In the image reconstruction stage, an optimized sub-pixel convolution module is used for the up-sampling of different spectral segments. Through a large number of verifications on the three general hyperspectral datasets, the superiority of this method compared with the existing hyperspectral SR methods is proved. In subjective and objective experiments, its experimental performance is better than its competitors.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 403
Author(s):  
Xun Zhang ◽  
Lanyan Yang ◽  
Bin Zhang ◽  
Ying Liu ◽  
Dong Jiang ◽  
...  

The problem of extracting meaningful data through graph analysis spans a range of different fields, such as social networks, knowledge graphs, citation networks, the World Wide Web, and so on. As increasingly structured data become available, the importance of being able to effectively mine and learn from such data continues to grow. In this paper, we propose the multi-scale aggregation graph neural network based on feature similarity (MAGN), a novel graph neural network defined in the vertex domain. Our model provides a simple and general semi-supervised learning method for graph-structured data, in which only a very small part of the data is labeled as the training set. We first construct a similarity matrix by calculating the similarity of original features between all adjacent node pairs, and then generate a set of feature extractors utilizing the similarity matrix to perform multi-scale feature propagation on graphs. The output of multi-scale feature propagation is finally aggregated by using the mean-pooling operation. Our method aims to improve the model representation ability via multi-scale neighborhood aggregation based on feature similarity. Extensive experimental evaluation on various open benchmarks shows the competitive performance of our method compared to a variety of popular architectures.


2021 ◽  
Vol 32 (2) ◽  
Author(s):  
Mehrdad Sheoiby ◽  
Sadegh Aliakbarian ◽  
Saeed Anwar ◽  
Lars Petersson

2020 ◽  
Vol 15 (1) ◽  
pp. 588-596 ◽  
Author(s):  
Jie Meng ◽  
Linyan Xue ◽  
Ying Chang ◽  
Jianguang Zhang ◽  
Shilong Chang ◽  
...  

AbstractColorectal cancer (CRC) is one of the main alimentary tract system malignancies affecting people worldwide. Adenomatous polyps are precursors of CRC, and therefore, preventing the development of these lesions may also prevent subsequent malignancy. However, the adenoma detection rate (ADR), a measure of the ability of a colonoscopist to identify and remove precancerous colorectal polyps, varies significantly among endoscopists. Here, we attempt to use a convolutional neural network (CNN) to generate a unique computer-aided diagnosis (CAD) system by exploring in detail the multiple-scale performance of deep neural networks. We applied this system to 3,375 hand-labeled images from the screening colonoscopies of 1,197 patients; of whom, 3,045 were assigned to the training dataset and 330 to the testing dataset. The images were diagnosed simply as either an adenomatous or non-adenomatous polyp. When applied to the testing dataset, our CNN-CAD system achieved a mean average precision of 89.5%. We conclude that the proposed framework could increase the ADR and decrease the incidence of interval CRCs, although further validation through large multicenter trials is required.


Sign in / Sign up

Export Citation Format

Share Document