1984 ◽  
Vol 12 (6) ◽  
pp. 689-695 ◽  
Author(s):  
C.M. Blatteis ◽  
W.S. Hunter ◽  
J. Llanos-Q ◽  
R.A. Ahokas ◽  
T.A. Mashburn

1988 ◽  
Vol 254 (4) ◽  
pp. R633-R640 ◽  
Author(s):  
A. Morimoto ◽  
T. Nakamori ◽  
T. Watanabe ◽  
T. Ono ◽  
N. Murakami

To distinguish pattern differences in experimentally induced fevers, we investigated febrile responses induced by intravenous (IV), intracerebroventricular (ICV), and intra-preoptic/anterior hypothalamic (POA) administration of bacterial endotoxin (lipopolysaccharide, LPS), endogenous pyrogen (EP), human recombinant interleukin-1 alpha (IL-1), and prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha). Intravenous LPS, EP, or IL-1 in high concentrations caused biphasic fever. In low concentrations, they induced only the first phase of fever. Latency to onset and time to first peak of fever induced by IV injection of LPS or EP were almost the same as those after ICV or POA injection of PGE2. Fever induced by ICV or POA administration of LPS, EP, IL-1, or PGF2 alpha had a long latency to onset and a prolonged time course. There were significant differences among the latencies to fever onset exhibited by groups that received ICV or POA injections of LPS, EP, or PGF2 alpha and by groups given IV injections of LPS or EP and ICV or POA injections of PGE2. Present observations indicate different patterns of fever produced by several kinds of pyrogens when given by various routes. These results permit us to consider the possibility that there are several mediators or multiprocesses underlying the pathogenesis of fever.


1958 ◽  
Vol 107 (3) ◽  
pp. 383-401 ◽  
Author(s):  
Elisha Atkins ◽  
Wei Cheng Huang

A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN2 failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses.


1981 ◽  
Vol 63 (1) ◽  
pp. 164-176 ◽  
Author(s):  
Marcelo B. Sztein ◽  
Stefanie N. Vogel ◽  
Jean D. Sipe ◽  
Patrick A. Murphy ◽  
Steven B. Mizel ◽  
...  

1974 ◽  
Vol 140 (4) ◽  
pp. 954-964 ◽  
Author(s):  
Phyllis Bodel

The characteristics of pyrogen production and release by human blood monocytes were investigated. A dose-response assay of monocyte pyrogen in rabbits indicated a linear relationship of temperature elevation to dose of pyrogen at lower doses. Monocytes did not contain pyrogen when first obtained, nor did they release it spontaneously even after 5 days of incubation in vitro. Pyrogen production was apparent 4 h after stimulation by endotoxin or phagocytosis, and continued for 24 h or more. Puromycin, an inhibitor of protein synthesis, prevented both initiation and continuation of pyrogen production and release. Pyrogen-containing supernates retained most pyrogenic activity during overnight incubation even in the presence of activated cells. Lymphocytes appeared to play no role in either initiation or continuation of pyrogen production in these studies.


Sign in / Sign up

Export Citation Format

Share Document