Microfluidic Systems for High-Throughput Screening

Author(s):  
Pooyan Tirandazi ◽  
Gabriel Tomic ◽  
Carlos H. Hidrovo

In this paper a new microfluidic technique is proposed for ultra-high-throughput generation of micron-sized water droplets using a high-speed air. We use a 3D flow-focusing microchannel fabricated in PDMS by multilayer lithography process. The interaction of liquid and gas created three main flow conditions which are: Flooded, Dripping, and Jetting. We characterize the Jetting regime where a capillary jet surrounded by the air breaks up into uniform array of droplets. Frequency of generation and droplet size are reported for the jetting regime under different liquid and gas flows. It was possible to obtain 25μm diameter droplets and much higher frequencies (f≈120 kHz) compared to the state-of-the-art microfluidic systems. We believe the advantages of this platform enables many novel applications such as high-throughput screening of airborne targets and large-scale production of oil-free particles. The 3D structure of this device also eliminates the limitation of the conventional droplet-based microfluidic systems, namely clogging issues due to particle aggregation.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document