uniform array
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tingping Zhang ◽  
Di Wan ◽  
Xinhai Wang ◽  
Fangqing Wen

Ideal array responses are often desirable to a multiple-input multiple-output (MIMO) system. Unfortunately, it may not be guaranteed in practice as the mutual coupling (MC) effects always exist. Current works concerning MC in the MIMO system only account for the uniform array geometry scenario. In this paper, we generalize the issue of angle estimation and MC self-calibration in a bistatic MIMO system in the case of arbitrary sensor geometry. The MC effects corresponding to the transmit array and the receive array are modeled by two MC matrices with several distinct entities. Angle estimation is then recast to a linear constrained quadratic problem. Inspired by the MC transformation property, a multiple signal classification- (MUSIC-) like strategy is proposed, which can estimate the direction-of-departure (DOD) and direction-of-arrival (DOA) via two individual spectrum searches. Thereafter, the MC coefficients are obtained by exploiting the orthogonality between the signal subspace and the noise subspace. The proposed method is suitable for arbitrary sensor geometry. Detailed analyses with respect to computational complexity, identifiability, and Cramer-Rao bounds (CRBs) are provided. Simulation results validate the effectiveness of the proposed method.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Yasser Albagory ◽  
Fahad Alraddady

Recently, antenna array radiation pattern synthesis and adaptation has become an essential requirement for most wireless communication systems. Therefore, this paper proposes a new recursive sidelobe level (SLL) reduction algorithm using a sidelobe sequential damping (SSD) approach based on pattern subtraction, where the sidelobes are sequentially reduced to the optimum required levels with near-symmetrical distribution. The proposed SSD algorithm is demonstrated, and its performance is analyzed, including SLL reduction and convergence behavior, mainlobe scanning, processing speed, and performance under mutual coupling effects for uniform linear and planar arrays. In addition, the SSD performance is compared with both conventional tapering windows and optimization techniques, where the simulation results show that the proposed SSD approach has superior maximum and average SLL performances and lower processing speeds. In addition, the SSD is found to have a constant SLL convergence profile that is independent on the array size, working effectively on any uniform array geometry with interelement spacing less than one wavelength, and deep SLL levels of less than −70 dB can be achieved relative to the mainlobe level, especially for symmetrical arrays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pankaj B. Agarwal ◽  
Navneet Kumar Thakur ◽  
Rishi Sharma ◽  
Parul Singh ◽  
Joshy Joseph ◽  
...  

AbstractBiosensors based on liquid-gated carbon nanotubes field-effect transistors (LG-CNTFETs) have attracted considerable attention, as they offer high sensitivity and selectivity; quick response and label-free detection. However, their practical applications are limited due to the numerous fabrication challenges including resist-based lithography, in which after the lithography process, the resist leaves trace level contaminations over the CNTs that affect the performance of the fabricated biosensors. Here, we report the realization of LG-CNTFET devices using silicon shadow mask-based chemical-free lithography process on a 3-in. silicon wafer, yielding 21 sensor chips. Each sensor chip consists of 3 × 3 array of LG-CNTFET devices. Field emission scanning electron microscope (FESEM) and Raman mapping confirm the isolation of devices within the array chip having 9 individual devices. A reference electrode (Ag/AgCl) is used to demonstrate the uniformity of sensing performances among the fabricated LG-CNTFET devices in an array using different KCl molar solutions. The average threshold voltage (Vth) for all 9 devices varies from 0.46 to 0.19 V for 0.1 mM to 1 M KCl concentration range. This developed chemical-free process of LG-CNTFET array fabrication is simple, inexpensive, rapid having a commercial scope and thus opens a new realm of scalable realization of various biosensors.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Guibao Wang ◽  
Peiyao Zhao ◽  
Le Wang ◽  
Lanmei Wang

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ying Zhou ◽  
Dazhuan Xu ◽  
Chao Shi ◽  
Weilin Tu ◽  
Junpeng Shi

In this paper, the mutual information between the received signals and the source in the coprime linear array is investigated. In Shannon’s information theory, the mutual information is used to quantify the reduction in the priori uncertainty of the transmitted message. Similarly, the spatial information in the coprime array is the mutual information between direction of arrival (DOA), source amplitude, and received signals. Such information content is composed of two parts. The first part is DOA information, and the second one is scattering information. In a single source scenario, we derive the theoretical expression and its asymptotic upper bound of DOA information. The corresponding expression of scattering information is also formulated theoretically. Besides, the application of spatial information is discussed. We can obtain the optimal array configuration by maximizing the DOA information of the coprime array. Similarly, the information is also used to quantify the performance difference between the coprime array and uniform array. In addition, the entropy error is employed to evaluate the estimation performance based on spatial information. Numerical simulation of the information content confirms our theoretical analysis. The results in this paper have important guiding significance for the design of the coprime array in the actual environment.


Author(s):  
Steven Iannucci ◽  
Suyi Li

Abstract Soft pneumatic actuators have found many applications in robotics and adaptive structures. Traditionally, these actuators are constructed by wrapping layers of reinforcing helical fibers around an elastomeric tube. This approach is versatile and robust, but it suffers from a critical disadvantage: cumbersome fabrication procedures. Wrapping long helical filaments around a cylindrical tube requires expensive equipment or excessive manual labor. To address this issue, we propose a new approach towards designing and constructing pneumatic actuators by exploiting the principle of kirigami, the ancient art of paper cutting. More specifically, we use “kirigami skins” — plastic sleeves with carefully arranged slit cuts — to replace the reinforcing helical fibers. This paper presents an initial investigation on a set of linear extension actuators featuring kirigami skins with a uniform array of cross-shaped, orthogonal cuts. When under internal pressurization, the rectangular-shaped facets defined by these cuts can rotate and induce the desired extension motion. Through extensive experiments, we analyze the elastic and plastic deformations of these kirigami skins alone under tension. The results show strongly nonlinear behaviors involving both in-plane facet rotation the out-of-plane buckling. Such a deformation pattern offers valuable insights into the actuator’s performance under pressure. Moreover, both the deformation characteristics and actuation performance are “programmable” by tailoring the cut geometry. This study lays down the foundation for constructing more capable Kirigami-skinned soft actuators that can achieve sophisticated motions.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4508
Author(s):  
Yapeng Zhan ◽  
Jiying Liu ◽  
Zelong Wang ◽  
Qi Yu

In computational ghost imaging, a spatial light modulator (SLM) can be used to modulate the light field. The relative locations and the number of light point pixels on an SLM affect the imaging quality. Usually, SLMs are two-dimensional arrays which are drawn uniformly or are randomly sparse. However, the patterns formed by a uniform array are periodic when the number of light point pixels is small, and the images formed by a random sparse array suffer from large background noise. In this paper, we introduce a coprime array based on the Eisenstein integer to optimize the light point pixel arrangement. A coprime array is widely used as a microwave radar receiving array, but less implemented in optics. This is the first time that a coprime array based on Eisenstein integer has been introduced in computational ghost imaging. A coprime array with this structure enhances the imaging quality when limited measurements are recorded, and it reduces background noise and avoids periodicity. All results are verified by numerical simulation.


2020 ◽  
Vol 20 (3) ◽  
pp. 176-182
Author(s):  
Doyoung Jang ◽  
Jun Hur ◽  
Hongsuk Shim ◽  
Junsik Park ◽  
Chihyun Cho ◽  
...  

This study investigates non-uniform array configurations to maximize the beamforming performance of passive coherent location (PCL) systems. The proposed array consists of eight dipole elements that are divided into two groups with different distances from the array center. This double-layered non-uniform configuration is designed considering the array antenna characteristics (peak-to-side lobe ratio, first null bandwidth, null width, and null depth). The resulting antenna array can provide more appropriate patterns for PCL systems than a conventional uniform circular array. The target detection performance of the proposed array in PCL systems is tested in a certain scenario. The results demonstrate that the proposed antenna in PCL systems can detect the target with Doppler and range errors of 1 Hz and 1.2 km, respectively, in a given situation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 949
Author(s):  
Ji-Hyeon Kim ◽  
ChaeWon Mun ◽  
Junfei Ma ◽  
Sung-Gyu Park ◽  
Seunghun Lee ◽  
...  

Cross-infection following cross-contamination is a serious social issue worldwide. Pathogens are normally spread by contact with germ-contaminated surfaces. Accordingly, antibacterial surface technologies are urgently needed and have consequently been actively developed in recent years. Among these technologies, biomimetic nanopatterned surfaces that physically kill adhering bacteria have attracted attraction as an effective technological solution to replace toxic chemical disinfectants (biocides). Herein, we introduce a transparent, colorless, and self-disinfecting polyethylene terephthalate (PET) film that mimics the surface structure of the Progomphus obscurus (sanddragon) wing physically killing the attached bacteria. The PET film was partially etched via a 4-min carbon tetrafluoride (CF4) plasma treatment. Compared to a flat bare PET film, the plasma-treated film surface exhibited a uniform array structure composed of nanopillars with a 30 nm diameter, 237 nm height, and 75 nm pitch. The plasma-treated PET film showed improvements in optical properties (transmittance and B*) and antibacterial effectiveness over the bare film; the transparency and colorlessness slightly increased, and the antibacterial activity increased from 53.8 to 100% for Staphylococcus aureus, and from 0 to 100% for Escherichia coli. These results demonstrated the feasibility of the CF4 plasma-treated PET film as a potential antibacterial overcoating with good optical properties.


Sign in / Sign up

Export Citation Format

Share Document