Influence of texture on dislocation creep and grain boundary sliding in fine-grained cadmium

1983 ◽  
Vol 31 (5) ◽  
pp. 763-772 ◽  
Author(s):  
Shu-en Hsu ◽  
G.R. Edwards ◽  
O.D. Sherby
2015 ◽  
Vol 7 (3) ◽  
pp. 2663-2695
Author(s):  
A. Rogowitz ◽  
J. C. White ◽  
B. Grasemann

Abstract. Extreme strain localization occurred in the center of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size (∼3 μm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J=1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy a deformation sequence is observed comprising, first recrystallization by bulging resulting in the development of the fine-grained ultramylonite followed by the evolution of a high dislocation density (∼1013 m−2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine grain sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at high strain rate (10−9 s−1) and low temperature (300 °C).


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 355-366 ◽  
Author(s):  
A. Rogowitz ◽  
J. C. White ◽  
B. Grasemann

Abstract. Extreme strain localization occurred in the centre of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element, evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size ( ∼  3 µm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J = 1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy, a deformation sequence is observed comprising recrystallization dominantly by bulging, resulting in the development of the fine-grained ultramylonite followed by the development of a high dislocation density ( ∼  1013 m−2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine-grain-sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at a high strain rate ( ∼  10−9 s−1) and low temperature (300 °C).


2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2012 ◽  
Vol 735 ◽  
pp. 17-21
Author(s):  
Eiichi Sato ◽  
Kaoru Ishiwata ◽  
Tetsuya Matsunaga

HCP metals show new dislocation creep at temperatures below 0.3 Tm with stresses below σ0.2, while FCC metals show it above σ0.2. In the former, grain boundaries absorb the dislocations through slip-induced grain-boundary sliding, while in the latter dislocations are accommodated by cross slip at cell walls. The difference comes from the difference in the crystal symmetry. In UFG-Al at low temperatures, it is anticipated that grains without cell structure lead creep deformation similar to CG HCP metals rather than CG Al. UFG Al specimens were fabricated by ARB method. They showed remarkable creep behavior at less than σ0.2 similary to CG HCP metals. It posseses stress exponent of about three, grain-size exponent of almost zero, and very low apparent activation energy of 20 kJ/mol, and also grain boundary sliding behavior is obserbed by AFM.


1999 ◽  
Vol 601 ◽  
Author(s):  
J.S. Vetrano ◽  
C.H. Henager ◽  
E.P. Simonen

AbstractIt is necessary for grain boundary dislocations to slide and climb during the grain boundary sliding process that dominates fine-grained superplastic deformation. The process of climb requires either an influx of vacancies to the grain boundary plane or a local generation of vacancies. Transmission electron microscopy (TEM) observations of grain boundaries in superplastically deformed Al-Mg-Mn alloys quenched under load from the deformation temperature have revealed the presence of nano-scale cavities resulting from a localized supersaturation of vacancies at the grain boundary. Compositional measurements along interfaces have also shown an effect of solute atoms on the local structure. This is shown to result from a coupling of vacancy and solute atom flows during deformation and quenching. Calculations of the localized vacancy concentration indicate that the supersaturation along the grain boundary can be as much as a factor often. The effects of the local supersaturation and solute atom movement on deformation rates and cavity nucleation and growth will be discussed.


2021 ◽  
Author(s):  
Manuel D. Menzel ◽  
Janos L. Urai ◽  
Peter B. Kelemen ◽  
Greg Hirth ◽  
Alexander Schwedt ◽  
...  

<p>Carbonated serpentinites record carbon fluxes in subduction zones and are a possible natural analogue for carbon capture and storage via mineralization, but the processes by which the reaction of serpentinite to listvenite (magnesite-quartz rocks) goes to completion are not well understood. Large-scale hydration and carbonation of peridotite in the Oman Ophiolite produced massive listvenites, which have been drilled by the ICDP Oman Drilling Project (OmDP, site BT1) [1]. Here we report evidence for localized ductile deformation during serpentinite carbonation in core BT1B, based on observations from optical microscopy, cathodoluminescence microscopy, SEM, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) in segments of the core that lack a brittle overprint after listvenite formation [2].</p><p>Microstructural analysis of the serpentinized peridotite protolith shows a range of microstructures common in serpentinite with local ductile deformation manifested by a shape and crystallographic preferred orientation and kinking of lizardite. Listvenites with ductile deformation microstructures contain a penetrative foliation due to a shape preferred alignment of magnesite spheroids and/or dendritic magnesite, bending around Cr-spinel porphyroclasts. Locally the foliation can be due to aligned dendritic overgrowths on euhedral magnesite grains. Magnesite grains have a weak but consistent crystallographic preferred orientation with the c-axis perpendicular to the foliation, and show high internal misorientations. Locally, the microcrystalline quartz matrix also shows a crystallographic preferred orientation with the c-axes preferentially oriented parallel to the foliation. Folding and ductile transposition of early magnesite veins indicates that carbonation initiated before the ductile deformation stage recorded in listvenites with penetrative foliation. On the other hand, dendritic magnesite overgrowths on folded veins and truncated vein tips suggest that folding likely occurred before complete carbonation, when some serpentine was still present. TEM analysis of magnesite revealed that subgrain boundaries oriented at high angle to the foliation can consist of nano-cracks sealed by inclusion-free magnesite precipitates. High dislocation densities are not evident suggesting that dislocation creep was minor or negligible, in agreement with very low predicted strain rates for magnesite dislocation creep at the low temperatures (100 – 200 °C) of serpentinite carbonation. This points to dissolution-precipitation, possibly in addition to grain boundary sliding, as the main mechanism for the formation of the shape preferred orientation of magnesite. The weak magnesite crystallographic preferred orientation may be explained by a combination of initial growth competition in an anisotropic (sheared) serpentine medium with subsequent preferred dissolution of smaller, less favorably oriented grains. We infer that transient lithostatic pore pressures during listvenite formation promoted ductile deformation in the reacting medium through grain boundary sliding accommodated by dilatant granular flow and dissolution-precipitation. Because the reaction product listvenite is stronger than the reacting mass, deformation may be preferentially partitioned in the reacting mass, locally enhancing transient fluid flow and, thus, the carbonation reaction progress.</p><p>[1] Kelemen et al., 2020. Site BT1: fluid and mass exchange on a subduction zone plate boundary. In: Proceedings of the Oman Drilling Project: College Station, TX</p><p>[2] Menzel et al., 2020, JGR Solid Earth 125(10)</p>


Sign in / Sign up

Export Citation Format

Share Document