Microdetermination of d-amino acids and d-amino acid oxidase activity with 3-methyl-2-benzothiazolone hydrazone hydrochloride

1968 ◽  
Vol 25 ◽  
pp. 228-235 ◽  
Author(s):  
Kenji Soda
Amino Acids ◽  
2012 ◽  
Vol 43 (5) ◽  
pp. 1811-1821 ◽  
Author(s):  
Masahiro Yamanaka ◽  
Yurika Miyoshi ◽  
Hiroko Ohide ◽  
Kenji Hamase ◽  
Ryuichi Konno

1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


1993 ◽  
Vol 268 (36) ◽  
pp. 26941-26949
Author(s):  
A D'Aniello ◽  
G D'Onofrio ◽  
M Pischetola ◽  
G D'Aniello ◽  
A Vetere ◽  
...  

Science ◽  
1943 ◽  
Vol 98 (2534) ◽  
pp. 89-89
Author(s):  
L. C. Clark ◽  
C. D. Kochakian ◽  
R. Phyllis Fox

1978 ◽  
Vol 77 (1) ◽  
pp. 59-71 ◽  
Author(s):  
JM Robinson ◽  
RT Briggs ◽  
MJ Karnovsky

The ultrastructural localization of D-amino acid oxidase (DAO) was studied cytochemically by detecting sites of hydrogen peroxide production in human polymorphonuclear leukocytes (PMNs). Reaction product, which forms when cerous ions react with H2O2 to form an electron-dense precipitate, was demonstrated on the cell surface and within the phagosomes of phagocytically stimulated cells when D-amino acids were provided as substrate. Resting cells showed only slight activity. The competitive inhibitor D,L-2-hydroxybutyrate greatly reduced the D-amino acid-stimulated reaction while KCN did not. The cell surface reaction was abolished by nonpenetrating inhibitors of enzyme activity while that within the phagosome was not eliminated. Dense accumulations of reaction product were formed in cells which phagocytosed Staphylococcus aureus in the absence of exogenous substrate. No reaction product formed with Proteus vulgaris while an intermediate amount formed when Escherichia coli were phagocytosed. Variation in the amount of reaction product with the different bacteria correlated with the levels of D-amino acids in the bacterial cell walls which are available for the DAO of PMNs. An alternative approach utilizing ferricyanide as an electron acceptor was also used. This technique verified the results obtained with the cerium reaction, i.e., the DAO is located in the cell surface and is internalized during phagocytosis and is capable of H2O2 production within the phagosome. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.


1997 ◽  
Vol 43 (3) ◽  
pp. 292-295 ◽  
Author(s):  
Salim K. Mujawar ◽  
Jaiprakash G. Shewale

Aspergillus sp. strain O20 produces inducible D-amino acid oxidase intracellularly, only in the presence of some amino acids. The enzyme was induced most effectively by the addition of DL-alanine (1% w/v) to the production medium. Among the various compounds studied, production of the D-amino acid oxidase was enhanced by Aerosol-22, glucose, and sodium nitrate. D-Amino acid oxidase formation was observed during the onset of the stationary growth phase. Maximum enzyme activity was recorded after 96 h of fermentation (1000 IU/L).Key words: D-amino acid oxidase, Aspergillus sp., 7-aminocephalosporanic acid, cephalosporin C.


1969 ◽  
Vol 15 (2) ◽  
pp. 154-161 ◽  
Author(s):  
K Van Dyke ◽  
C Szustkiewicz

Abstract An automated system for the determination of the L-α form of the majority of amino acids is presented. The method is based upon oxidative deamination of the amino acid coupled with oxidation of o-dianisidine by hydrogen peroxide. This procedure can be used comparatively for the determination of a mixture of L-α-amino acids or for the majority of separated L-α-amino acids (especially in conjunction with column separations from urine and blood which give falsely positive identification with ninhydrin detection). The stereospecific nature of the L-α-amino acid oxidase enables the investigator to quantitate the amount of L-α-amino acid in the presence of the D-α form. From an academic viewpoint, the extreme sensitivity and wide range of the detection system make it advantageous for the study of the enzyme itself. This automated method also may be employed to follow enzymatic reactions—e.g., those catalyzed by peptidases or racemases. The methodology is extremely convenient with good reagent stability and is much more sensitive than manometric technics.


1991 ◽  
Vol 23 (11) ◽  
pp. 1301-1305 ◽  
Author(s):  
Konno Ryuichi ◽  
Yamamoto Katsuhiko ◽  
Niwa Akira ◽  
Yasumura Yosihiro

Sign in / Sign up

Export Citation Format

Share Document