A method for the synchronization of cultured cells with aphidicolin: Application to the large-scale synchronization of L1210 cells and the study of the cell cycle regulation of thymidylate synthase and dihydrofolate reductase

1989 ◽  
Vol 182 (2) ◽  
pp. 338-345 ◽  
Author(s):  
Larry H. Matherly ◽  
John D. Schuetz ◽  
Eric Westin ◽  
I.David Goldman
2009 ◽  
Vol 37 (3) ◽  
pp. 737-745 ◽  
Author(s):  
Z Qiu ◽  
H Yang ◽  
J Wu ◽  
L Wei ◽  
J Li

This study investigated the effects of the ionic dissolution products of NovaBone® on osteoblastic proliferation and cell cycle regulation. MG63 osteoblast-like cells were cultured in NovaBone®-conditioned Dulbecco's Modified Eagle's Medium (DMEM) or control DMEM for 10 days. The concentration of silicon ions was significantly higher in NovaBone®-conditioned DMEM than control DMEM. MG63 cells cultured in NovaBone®-conditioned DMEM exhibited greater proliferation on days 1 and 4 than control cells. There were increased proportions of Novabone®-conditioned DMEM-cultured cells in the S and G2/M phases, and decreased proportions in the G0/G1 phase on days 1 and 4 versus control cells, while no differences were observed on days 7 and 10 between the two groups. Bone morphogenic protein 2 production increased in both groups, but was significantly higher for the NovaBone®-conditioned DMEM-cultured cells on day 10 compared with the controls. In conclusion, the NovaBone® ionic dissolution products, particularly the silicon ions, promoted proliferation of MG63 osteoblast-like cells in vitro via influences on the cell cycle.


1986 ◽  
Vol 6 (2) ◽  
pp. 365-371
Author(s):  
P J Farnham ◽  
R T Schimke

The murine dihydrofolate reductase gene codes for mRNAs that differ in the length of their 3' untranslated region as well as in the length of their 5' leader sequence. In addition, the dihydrofolate reductase promoter functions bidirectionally, producing a series of RNAs from the opposite strand than the dihydrofolate reductase mRNAs. We have examined the production of these RNAs and their heterogeneous 5' and 3' termini as mouse 3T6 cells progress through a physiologically continuous cell cycle. We found that all of the transcripts traverse the cell cycle in a similar manner, increasing at the G1/S boundary without significantly changing their ratios relative to one another. We conclude that cell-cycle regulation of dihydrofolate reductase is achieved without recruiting new transcription initiation sites and without a change in polyadenylation sites. It appears that the mechanism responsible for the transcriptional cell-cycle regulation of the dihydrofolate reductase gene is manifested only by transiently increasing the efficiency of transcription at the dihydrofolate reductase promoter.


1986 ◽  
Vol 6 (2) ◽  
pp. 365-371 ◽  
Author(s):  
P J Farnham ◽  
R T Schimke

The murine dihydrofolate reductase gene codes for mRNAs that differ in the length of their 3' untranslated region as well as in the length of their 5' leader sequence. In addition, the dihydrofolate reductase promoter functions bidirectionally, producing a series of RNAs from the opposite strand than the dihydrofolate reductase mRNAs. We have examined the production of these RNAs and their heterogeneous 5' and 3' termini as mouse 3T6 cells progress through a physiologically continuous cell cycle. We found that all of the transcripts traverse the cell cycle in a similar manner, increasing at the G1/S boundary without significantly changing their ratios relative to one another. We conclude that cell-cycle regulation of dihydrofolate reductase is achieved without recruiting new transcription initiation sites and without a change in polyadenylation sites. It appears that the mechanism responsible for the transcriptional cell-cycle regulation of the dihydrofolate reductase gene is manifested only by transiently increasing the efficiency of transcription at the dihydrofolate reductase promoter.


Sign in / Sign up

Export Citation Format

Share Document