human colon cancer
Recently Published Documents


TOTAL DOCUMENTS

3462
(FIVE YEARS 554)

H-INDEX

110
(FIVE YEARS 12)

2023 ◽  
Vol 83 ◽  
Author(s):  
Maryam A. Al-Ghamdi ◽  
A. AL-Enazy ◽  
E.A Huwait ◽  
A. Albukhari ◽  
S. Harakeh ◽  
...  

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 482
Author(s):  
Li-Zhi Cheng ◽  
Dan-Ling Huang ◽  
Min Liao ◽  
Ke-Ming Li ◽  
Zhao-Qiu Wu ◽  
...  

Moreollic acid, a caged-tetraprenylated xanthone from Gamboge, has been indicated as a potent antitumor molecule. In the present study, a series of moreollic acid derivatives with novel structures were designed and synthesized, and their antitumor activities were determined in multifarious cell lines. The preliminary screening results showed that all synthesized compounds selectively inhibited human colon cancer cell proliferation. TH12-10, with an IC50 of 0.83, 1.10, and 0.79 μM against HCT116, DLD1, and SW620, respectively, was selected for further antitumor mechanism studies. Results revealed that TH12-10 effectively inhibited cell proliferation by blocking cell-cycle progression from G1 to S. Besides, the apparent structure–activity relationships of target compounds were discussed. To summarize, a series of moreollic acid derivatives were discovered to possess satisfactory antitumor potentials. Among them, TH12-10 displays the highest antitumor activities against human colon cancer cells, in which the IC50 values in DLD1 and SW620 are lower than that of 5-fluorouracil.


Oncogene ◽  
2022 ◽  
Author(s):  
Jinguan Lin ◽  
Longzheng Xia ◽  
Linda Oyang ◽  
Jiaxin Liang ◽  
Shiming Tan ◽  
...  

AbstractCancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 369
Author(s):  
Joanna Wawszczyk ◽  
Katarzyna Jesse ◽  
Sławomir Smolik ◽  
Małgorzata Kapral

Pterostilbene is a dietary phytochemical that has been found to possess several biological activities, such as antioxidant and anti-inflammatory. Recent studies have shown that it exhibits the hallmark characteristics of an anticancer agent. The aim of the study was to investigate the anticancer activity of pterostilbene against HT-29 human colon cancer cells, focusing on its influence on cell growth, differentiation, and the ability of this stilbene to induce cell death. To clarify the mechanism of pterostilbene activity against colon cancer cells, changes in the expression of several genes and proteins that are directly related to cell proliferation, signal transduction pathways, apoptosis, and autophagy were also evaluated. Cell growth and proliferation of cells exposed to pterostilbene (5–100 µM) were determined by SRB and BRDU assays. Flow cytometric analyses were used for cell cycle progression. Further molecular investigations were performed using quantitative real-time RT-PCR. The expression of the signaling proteins studied was determined by the ELISA method. The results revealed that pterostilbene inhibited proliferation and induced the death of HT-29 colon cancer cells. Pterostilbene, depending on concentration, caused inhibition of proliferation, G1 cell arrest, and/or triggered apoptosis in HT-29 cells. These effects were mediated by the down-regulation of the STAT3 and AKT kinase pathways. It may be concluded that pterostilbene could be considered as a potential therapeutic option in the treatment of colon cancer in the future.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 358
Author(s):  
Reem Al Monla ◽  
Zeina Dassouki ◽  
Nouha Sari-Chmayssem ◽  
Hiba Mawlawi ◽  
Hala Gali-Muhtasib

Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Xiaoxia Cheng ◽  
Shao'an Xue ◽  
Zijian Wang ◽  
Fengqin He ◽  
Bo Wang

In this study we investigate the migration inhibition of Gypenosides (Gyp) and its combined effects with 5-fluorouracil (5-FU) on human colon cancer SW-620 cells, hoping to explore more potential clinical use of Gyp. Our data implied Gyp could significantly inhibit the migration potential of SW-620 cells including down-regulating matrix Metalloproteinases expression and decreasing cells adhesion ability. What’s more, evidence showed cells treated with Gyp exerted serious microfilament network collapse as well as a significant decline in the number of microvilli. A significant migration inhibitory effect was seen in Gyp groups along with the decline of cell adhesion. Further, the combination studies suggested Gyp could synergistically enhance the antitumor effect of 5-FU in SW-620 cells through the apoptosis way. The present study indicated Gyp could prevent cell migration and further enhance the cell killing effect of 5-FU on human colon cancer SW-620 cells.


Sign in / Sign up

Export Citation Format

Share Document