Photophosphorylation by isolated chromatophores of the purple sulfur bacteria

1958 ◽  
Vol 76 (1) ◽  
pp. 168-179 ◽  
Author(s):  
I.C. Anderson ◽  
R.C. Fuller
2007 ◽  
Vol 95 (2-3) ◽  
pp. 261-268 ◽  
Author(s):  
Rodney A. Herbert ◽  
Andrew Gall ◽  
Takashi Maoka ◽  
Richard J. Cogdell ◽  
Bruno Robert ◽  
...  

2008 ◽  
pp. 101-116 ◽  
Author(s):  
Frauke Grimm ◽  
Bettina Franz ◽  
Christiane Dahl

2013 ◽  
Vol 31 (2) ◽  
pp. 128-137 ◽  
Author(s):  
Derek Smith ◽  
James Scott ◽  
Andrew Steele ◽  
George Cody ◽  
Shohei Ohara ◽  
...  

1987 ◽  
Vol 19 (12) ◽  
pp. 237-241 ◽  
Author(s):  
H. M. Pinheiro ◽  
M. T. Reis ◽  
J. M. Novais

Colour changes and other marked disturbances were observed at a high-rate photosynthetic pond system at Alcochete, Portugal. Previous chemical and microbiological tests made it possible to attribute these occurrences to the proliferation of purple sulfur bacteria, following the probable production of sulfide inside the ponds by sulfate-reducing bacteria. Results from more recent tests and observations are presented, which confirm the earlier conclusions, in addition to revealing a number of inadequacies in the ponds chosen operating conditions, which are in all probability at the origin of the observed disturbances. Corrective actions planned include a more efficient mixing of pond contents, the strict prevention of contamination with salty estuarine waters and the control of residence times and bottom sludge accumulation.


2011 ◽  
Vol 61 (7) ◽  
pp. 1682-1687 ◽  
Author(s):  
Sandro Peduzzi ◽  
Allana Welsh ◽  
Antonella Demarta ◽  
Paola Decristophoris ◽  
Raffaele Peduzzi ◽  
...  

Two isolates, designated CadH11T and Cad448T, representing uncultured purple sulfur bacterial populations H and 448, respectively, in the chemocline of Lake Cadagno, a crenogenic meromictic lake in Switzerland, were obtained using enrichment and isolation conditions that resembled those used for cultured members of the genus Thiocystis. Phenotypic, genotypic and phylogenetic analyses of these isolates confirmed their assignment to the genus Thiocystis. However, 16S rRNA gene sequence similarities of 98.2 % between CadH11T and Cad448T, and similarities of 97.7 and 98.5 %, respectively, with their closest cultured relative Thiocystis gelatinosa DSM 215T, as well as differences in DNA G+C content and carbon source utilization suggested that the isolates belonged to two distinct species. DNA–DNA hybridization of CadH11T and Cad448T with T. gelatinosa DSM 215T showed relatedness values of 46.4 and 60.8 %, respectively; the relatedness value between CadH11T and Cad448T was 59.2 %. Based on this evidence, strains CadH11T and Cad448T represent two novel species within the genus Thiocystis, for which the names Thiocystis chemoclinalis sp. nov. and Thiocystis cadagnonensis sp. nov. are proposed, respectively. The type strains of T. chemoclinalis sp. nov. and T. cadagnonensis sp. nov. are CadH11T ( = JCM 15112T  = KCTC 5954T) and Cad448T ( = JCM 15111T  = KCTC 15001T), respectively.


2021 ◽  
Vol 29 (1) ◽  
pp. 39-46
Author(s):  
O. M. Moroz ◽  
G. I. Zvir ◽  
S. O. Hnatush

Pollutants of inorganic nature (acids, alkalis, mineral salts of different composition, metals) change the course of biological processes of environmental purification, but their influence on the physiological properties of phototrophic sulfur bacteria has not been studied enough. The usage of nitrite ions as an electron donor of anoxygenic photosynthesis by cells of phototrophic green and purple sulfur bacteria Chlorobium limicola IMV K-8, Thiocapsa sp. Ya-2003 and Lamprocystis sp. Ya-2003, isolated from Yavorivske Lake, under the influence of the most widespread inorganic pollutants – hydro- and dihydrophosphates, sulfates, chlorides and chlorates, has been studied. It is shown that KH2PO4, K2HPO4, Na2SO4, NaCl and KClO3, present in the van Niel medium with 4.2 mM NaNO2 at concentrations that are 0.5, 1.0, 2.0, 3.0, 4.0 times different from the maximum permissible concentrations (MPC), influenced the biomass accumulation and nitrite ions oxidation by phototrophic green and purple sulfur bacteria. In media with hydro- and dihydrophosphate ions at concentrations 4.0 times higher than the MPC, inhibition of bacterial growth was up to 1.7 times lower than in the control. The biomass accumulation by bacteria in media with chloride and chlorate ions at concentrations 3.0–4.0 times higher than MPC was 2.0–2.8 times lower compared to the control. In the medium with Na2SO4 at concentrations 2.0–4.0 times higher than MPC, the biomass was 2.0–4.0 times lower than in the control. Nitrites’ oxidation by all strains in the media with the studied pollutants was slowed down. The residual content of nitrite ions in media with hydro- and dihydrophosphate, chloride and chlorate ions at their concentrations 4.0 times higher than MPC, exceeded the NO2– content in the control variants up to 1.7 times. If in the medium without pollutants the cells of C. limicola IMV K-8, Thiocapsa sp. Ya-2003 and Lamprocystis sp. Ya-2003 strains oxidized 72.7%, 72.2% and 71.4%, respectively, of nitrite ions present in the medium, then in the medium with sulfate ions at concentration 4.0 times higher than the MPC, bacteria oxidized nitrite ions only at 39.6%, 34.4% and 27.0%, respectively. Oxidation of a lower quantity of nitrites by phototrophic bacteria in the media with inorganic pollutants led to the production by them of a lower quantity of nitrates. The content of NO3– in the media with hydro-, dihydrophosphate and chlorate ions at all concentrations was up to 1.9 times lower than in the control. In media with sulfate ions at concentrations 2.0–4.0 times higher than MPC and chloride at concentration 4.0 times higher than MPC, the content of nitrate ions was 2.1–4.3 and 2.0 times, respectively, lower than in the control variants. Inorganic pollutants stimulated the synthesis of intracellular carbohydrates in C. limicola IMV K-8. If the content of intracellular glucose in cells grown in the medium without pollutants was 10.3 mg/g dry cell weight, then in cells grown in media with K2HPO4, KH2PO4, Na2SO4, NaCl and KClO3 at concentrations 4.0 times higher than MPC, its content increased by 12.2%, 10.7%, 51.6%, 17.1% and 35.9%, respectively. The glycogen content in the cells grown in the medium without pollutants was 45.1 mg/g dry cell weight. Hydro- and dihydrophosphate, chloride and chlorate ions at concentrations 4.0 times higher than MPC stimulated glycogen synthesis in cells by 47.5%, 57.6%, 67.4% and 74.6%, respectively. The glycogen content in cells grown in the medium with Na2SO4 at concentrations 3.0 and 4.0 times higher than MPC increased by 102.9% and 107.5%, respectively. Therefore, it is established that pollutants of inorganic nature affect the physiological properties of photosynthetic sulfur bacteria and thus change the course of biological processes of environment purification, in particular, from nitrite ions.


Sign in / Sign up

Export Citation Format

Share Document