scholarly journals Evaluation of Laser In Situ Scattering Instrument for Measuring Concentration of Phytoplankton, Purple Sulfur Bacteria, and Suspended Inorganic Sediments in Lakes

2001 ◽  
Vol 127 (11) ◽  
pp. 1023-1030 ◽  
Author(s):  
Teresa Serra ◽  
Jordi Colomer ◽  
Xavier P. Cristina ◽  
Xavier Vila ◽  
Juan B. Arellano ◽  
...  
2021 ◽  
Author(s):  
Kayley Hake ◽  
Patrick T West ◽  
Kent L. McDonald ◽  
Davis Laundon ◽  
Crystal Feng ◽  
...  

Choanoflagellates offer key insights into bacterial influences on the origin and early evolution of animals. Here we report the isolation and characterization of a new colonial choanoflagellate species, Salpingoeca monosierra, that, unlike previously characterized species, harbors a stable microbiome. S. monosierra was isolated from Mono Lake, California and forms large spherical colonies that are more than an order of magnitude larger than those formed by the closely related S. rosetta. By designing fluorescence in situ hybridization probes from metagenomic sequences, we found that S. monosierra colonies are colonized by members of the halotolerant and closely related Saccharospirillaceae and Oceanospirillaceae, as well as purple sulfur bacteria (Ectothiorhodospiraceae) and non-sulfur Rhodobacteraceae. This relatively simple microbiome in a close relative of animals presents a new experimental model for investigating the evolution of stable interactions among eukaryotes and bacteria.


1990 ◽  
Vol 73 (4) ◽  
pp. 271-281
Author(s):  
Jordi Mas ◽  
Carlos Pedrós-Alió ◽  
Ricardo Guerrero

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miriam Philippi ◽  
Katharina Kitzinger ◽  
Jasmine S. Berg ◽  
Bernhard Tschitschko ◽  
Abiel T. Kidane ◽  
...  

AbstractBiological N2 fixation was key to the expansion of life on early Earth. The N2-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N2 fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N2 fixation rates, to our knowledge providing the first direct evidence for PSB in situ N2 fixation. Surprisingly, no alternative nitrogenases are detectable, and N2 fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N2 fixation in the Proterozoic ocean.


2007 ◽  
Vol 189 (20) ◽  
pp. 7525-7529 ◽  
Author(s):  
Yong-Jin Lee ◽  
Alexander Prange ◽  
Henning Lichtenberg ◽  
Manfred Rohde ◽  
Mona Dashti ◽  
...  

ABSTRACT The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.


2003 ◽  
Vol 69 (7) ◽  
pp. 3739-3750 ◽  
Author(s):  
Jens Glaeser ◽  
Jörg Overmann

ABSTRACT A dense population of the phototrophic consortium “Pelochromatium roseum” was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of “P. roseum” constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of “P. roseum” was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H14CO3 − fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (δ13C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and β-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their δ13C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in 13C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of purple sulfur bacteria. The difference between the δ13C values of farnesol, the major esterifying alcohol of BChl e, and CO2 was −7.1%, which provides clear evidence that the mode of growth of the green sulfur bacterial epibionts of “P. roseum” in situ is photoautotrophic.


2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


2007 ◽  
Vol 95 (2-3) ◽  
pp. 261-268 ◽  
Author(s):  
Rodney A. Herbert ◽  
Andrew Gall ◽  
Takashi Maoka ◽  
Richard J. Cogdell ◽  
Bruno Robert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document