inorganic pollutants
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 147)

H-INDEX

32
(FIVE YEARS 9)

2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Mohamed SABER ◽  
Alaa M ZAGHLOUL

<p class="042abstractstekst"><span lang="EN-US">To sightsee the bearings of the certain remediation amendments, usually applied in the bioremediation of soils irrigated with low quality water for extended periods on the indigenous microbial population, a greenhouse experiment was conducted at National Research Centre (NRC) where the soil ecosystem was supplied with varied mineral remediation amendments and the carbon dioxide (CO<sub>2</sub>) refluxes were followed up. In this study, microbial activity through CO<sub>2</sub> efflux was taken as an indicator to evaluate the effectiveness of eight soil amendments in minimizing the hazards of inorganic pollutants in soil ecosystem irrigated with low quality water s for more than 40 years. Results showed that Ni and Zn were the most dominant contaminants that adversely influenced indigenous microbial activities in untreated soil, while Cu was the most persuasive. All trailed remediation amendments significantly minimized the hazards of inorganic pollutants in treated soil ecosystems. In addition, modified bentonite (Probentonite) was the best persuasive one. Mechanisms take place between trailed remediation amendments and inorganic pollutants in the studied soil ecosystems were discussed. In conclusion application of certain raw or modified clay minerals especially Probentonite could be a good tool in decreasing the rate of the studied inorganic pollutants in a contaminated soil ecosystem irrigated with low quality water for extended periods. </span></p>


2021 ◽  
Vol 7 (1) ◽  
pp. 18-24
Author(s):  
Tien Zubaidah ◽  
Sulaiman Hamzani ◽  
Arifin

The self-purification capacity is an important indicator for a healthy river. Organic and inorganic pollutants from various pollutant sources, both point sources, and non-point sources, in most rivers in Banjar Regency, cause a decrease in river water quality. This study aims to identify the distribution of river water quality pollution in Banjar Regency as the upstream of the Martapura River and determine the point of self-purification. A sampling of river water using the purposive sampling technique, taking into account the criteria for pollutant sources and the distance of pollution. The results of the concentration values were analyzed using a trend analysis technique, which connected the value of the concentration of pollutant elements with the distance of pollution to identify the distribution of pollution, and to determine the distance of purification. The results showed that the self-purification ability (pH and DO) decreased in concentration at all observation points.


2021 ◽  

Various organic and synthetic polymers are important materials for the removal of organic and inorganic pollutants from wastewater and the separation of gases. The book discusses various types of membranes for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis etc. A number of nanomaterials are available for the modification of polymeric membranes.


2021 ◽  
pp. 218-245
Author(s):  
R. Jasrotia

The decreasing levels of consumable water on earth have been a serious issue and this issue makes the researchers and scientists develop new technologies for the purification of polluted water. Several reports have been carried on wastewater remediation by utilizing spinel ferrite-based nanoparticles and their composites. The spinel ferrites-based nanoparticles utilized for wastewater treatment was cost effective, chemically stable, easily retrieved and reusable. The present work addresses the various fabrication techniques for the preparation of spinel ferrite-based nanoparticles and their utilization for the removal of organic and inorganic pollutants through the adsorption paths.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6628
Author(s):  
Vera I. Isaeva ◽  
Marina D. Vedenyapina ◽  
Alexandra Yu. Kurmysheva ◽  
Dirk Weichgrebe ◽  
Rahul Ramesh Nair ◽  
...  

Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices—biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.


Fuel ◽  
2021 ◽  
pp. 122516
Author(s):  
Hongliang Qian ◽  
Donghang Yin ◽  
Beichen Qin ◽  
Licheng Li ◽  
Jiahua Zhu ◽  
...  

2021 ◽  
Vol 191 ◽  
pp. 243-254
Author(s):  
Esraa M. Bakhsh ◽  
Kalsoom Akhtar ◽  
Taghreed M. Fagieh ◽  
Abdullah M. Asiri ◽  
Sher Bahadar Khan

Sign in / Sign up

Export Citation Format

Share Document