scholarly journals Head-up tilting effect on muscle sympathetic nerve activity and skin blood flow of the leg

1994 ◽  
Vol 75 (9) ◽  
pp. 1031
Author(s):  
Kyu-Ha Lee ◽  
Hajime Ogata ◽  
Fumihiro Tajima ◽  
Arom Khunphasee ◽  
Marvin Bleiberg
2000 ◽  
Vol 278 (4) ◽  
pp. H1256-H1260 ◽  
Author(s):  
Chiara Cogliati ◽  
Renata Magatelli ◽  
Nicola Montano ◽  
Krzysztof Narkiewicz ◽  
Virend K. Somers

Spectral analysis of skin blood flow has demonstrated low-frequency (LF, 0.03–0.15 Hz) and high-frequency (HF, 0.15–0.40 Hz) oscillations, similar to oscillations in R-R interval, systolic pressure, and muscle sympathetic nerve activity (MSNA). It is not known whether the oscillatory profile of skin blood flow is secondary to oscillations in arterial pressure or to oscillations in skin sympathetic nerve activity (SSNA). MSNA and SSNA differ markedly with regard to control mechanisms and morphology. MSNA contains vasoconstrictor fibers directed to muscle vasculature, closely regulated by baroreceptors. SSNA contains both vasomotor and sudomotor fibers, differentially responding to arousals and thermal stimuli. Nevertheless, MSNA and SSNA share certain common characteristics. We tested the hypothesis that LF and HF oscillatory components are evident in SSNA, similar to the oscillatory components present in MSNA. We studied 18 healthy normal subjects and obtained sequential measurements of MSNA and SSNA from the peroneal nerve during supine rest. Measurements were also obtained of the electrocardiogram, beat-by-beat blood pressure (Finapres), and respiration. Spectral analysis showed LF and HF oscillations in MSNA, coherent with similar oscillations in both R-R interval and systolic pressure. The HF oscillation of MSNA was coherent with respiration. Similarly, LF and HF spectral components were evident in SSNA variability, coherent with corresponding variability components of R-R interval and systolic pressure. HF oscillations of SSNA were coherent with respiration. Thus our data suggest that these oscillations may be fundamental characteristics shared by MSNA and SSNA, possibly reflecting common central mechanisms regulating sympathetic outflows subserving different regions and functions.


2006 ◽  
Vol 290 (4) ◽  
pp. H1601-H1609 ◽  
Author(s):  
Jian Cui ◽  
Mithra Sathishkumar ◽  
Thad E. Wilson ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
...  

Skin sympathetic nerve activity (SSNA) exhibits low- and high-frequency spectral components in normothermic subjects. However, spectral characteristics of SSNA in heat-stressed subjects are unknown. Because the main components of the integrated SSNA during heat stress (sudomotor/vasodilator activities) are different from those during normothermia and cooling (vasoconstrictor activity), we hypothesize that spectral characteristics of SSNA in heat-stressed subjects will be different from those in subjects subjected to normothermia or cooling. In 17 healthy subjects, SSNA, electrocardiogram, arterial blood pressure (via Finapres), respiratory activity, and skin blood flow were recorded during normothermia and heat stress. In 7 of the 17 subjects, these variables were also recorded during cooling. Spectral characteristics of integrated SSNA, R-R interval, beat-by-beat mean blood pressure, skin blood flow variability, and respiratory excursions were assessed. Heat stress and cooling significantly increased total SSNA. SSNA spectral power in the low-frequency (0.03–0.15 Hz), high-frequency (0.15–0.45 Hz), and very-high-frequency (0.45–2.5 Hz) regions was significantly elevated by heat stress and cooling. Interestingly, heat stress caused a greater relative increase of SSNA spectral power within the 0.45- to 2.5-Hz region than in the other spectral ranges; cooling did not show this effect. Differences in the SSNA spectral distribution between normothermia/cooling and heat stress may reflect different characteristics of central modulation of vasoconstrictor and sudomotor/vasodilator activities.


2010 ◽  
Vol 108 (5) ◽  
pp. 1234-1240 ◽  
Author(s):  
Raman Moradkhan ◽  
Brett Spitnale ◽  
Patrick McQuillan ◽  
Cynthia Hogeman ◽  
Kristen S. Gray ◽  
...  

Obstructive sleep apnea (OSA) is associated with increased sympathetic nerve activity, endothelial dysfunction, and premature cardiovascular disease. To determine whether hypoxia is associated with impaired skeletal muscle vasodilation, we compared femoral artery blood flow (ultrasound) and muscle sympathetic nerve activity (peroneal microneurography) during exposure to acute systemic hypoxia (fraction of inspired oxygen 0.1) in awake patients with OSA ( n = 10) and controls ( n = 8). To assess the role of elevated sympathetic nerve activity, in a separate group of patients with OSA ( n = 10) and controls ( n = 10) we measured brachial artery blood flow during hypoxia before and after regional α-adrenergic block with phentolamine. Despite elevated sympathetic activity, in OSA the vascular responses to hypoxia in the leg did not differ significantly from those in controls [ P = not significant (NS)]. Following regional phentolamine, in both groups the hypoxia-induced increase in brachial blood flow was markedly enhanced (OSA pre vs. post, 84 ± 13 vs. 201 ± 34 ml/min, P < 0.002; controls pre vs. post 62 ± 8 vs. 140 ± 26 ml/min, P < 0.01). At end hypoxia after phentolamine, the increase of brachial blood flow above baseline was similar (OSA vs. controls +61 ± 16 vs. +48 ± 6%; P = NS). We conclude that despite high sympathetic vasoconstrictor tone and prominent sympathetic responses to acute hypoxia, hypoxia-induced limb vasodilation is preserved in OSA.


2007 ◽  
Vol 102 (3) ◽  
pp. 870-877 ◽  
Author(s):  
Jurgen A. H. R. Claassen ◽  
Rong Zhang ◽  
Qi Fu ◽  
Sarah Witkowski ◽  
Benjamin D. Levine

Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO2 (PetCO2) under steady-state conditions. However, the cerebral blood flow (CBF)-PetCO2 relationship is nonlinear, even for moderate changes in CO2. Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and PetCO2. Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O2 to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-PetCO2 and CVCi-PetCO2 relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in PetCO2 (20–61 Torr), CBFV (−44 to +104% of baseline), CVCi (−39 to +64%), and ABP (−19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. PetCO2 was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-PetCO2 ( r2 = 0.97) and CVCi-PetCO2 ( r2 = 0.93) was superior to linear regression ( r2 = 0.91, r2 = 0.85; P = 0.01). CVMR was maximal (6–8%/Torr) for PetCO2 of 40–50 Torr. In conclusion, CBFV and CVCi responses to transient changes in PetCO2 can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-PetCO2 relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO2.


2015 ◽  
Vol 114 (3) ◽  
pp. 1530-1537 ◽  
Author(s):  
Kristen Metzler-Wilson ◽  
Kumika Toma ◽  
Dawn L. Sammons ◽  
Sarah Mann ◽  
Andrew J. Jurovcik ◽  
...  

Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm−2·min−1, P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.


2005 ◽  
Vol 98 (3) ◽  
pp. 787-794 ◽  
Author(s):  
Ivani C. Trombetta ◽  
Luciana T. Batalha ◽  
Maria U. P. B. Rondon ◽  
Mateus C. Laterza ◽  
Eliana Frazzatto ◽  
...  

We hypothesized that the muscle vasodilatation during mental stress and exercise would vary among humans who are polymorphic at alleles 16 and 27 of the β2-adrenoceptors. From 216 preselected volunteers, we studied 64 healthy, middle-aged normotensive women selected to represent three genotypes: homozygous for the alleles Arg16 and Gln27 (Arg16/Gln27, n = 34), Gly16 and Gln27 (Gly16/Gln27, n = 20), and Gly16 and Glu27 (Gly16/Glu27, n = 10). Forearm blood flow (plethysmography) and muscle sympathetic nerve activity (microneurography) were recorded during 3-min Stroop color-word test and 3-min handgrip isometric exercise (30% maximal voluntary contraction). Baseline muscle sympathetic nerve activity, forearm vascular conductance, mean blood pressure, and heart rate were not different among groups. During mental stress, the peak forearm vascular conductance responses were greater in Gly16/Glu27 group than in Gly16/Gln27 and Arg16/Gln27 groups (1.79 ± 0.66 vs. 0.70 ± 0.11 and 0.58 ± 0.12 units, P = 0.03). Similar results were found during exercise (0.80 ± 0.25 vs. 0.28 ± 0.08 and 0.31 ± 0.08 units, P = 0.02). Further analysis in a subset of subjects showed that brachial intra-arterial propranolol infusion abolished the difference in vasodilatory response between Gly16/Glu27 ( n = 6) and Arg16/Gln27 ( n = 7) groups during mental stress (0.33 ± 0.20 vs. 0.46 ± 0.21 units, P = 0.50) and exercise (0.08 ± 0.06 vs. 0.03 ± 0.03 units, P = 0.21). Plasma epinephrine concentration in Arg16/Gln27 and Gly16/Glu27 groups was similar. In conclusion, women who are homozygous for Gly16/Glu27 of the β2-adrenoceptors have augmented muscle vasodilatory responsiveness to mental stress and exercise.


2007 ◽  
Vol 112 (6) ◽  
pp. 353-361 ◽  
Author(s):  
Andrew J. Hogarth ◽  
Alan F. Mackintosh ◽  
David A. S. G. Mary

The risk of cardiovascular disease has been linked to sympathetic activation and its incidence is known to be lower in women than in men. However, the effect of gender on the sympathetic vasoconstrictor drive has not yet been established. In the present study, we investigated whether there is a gender difference in MSNA (muscle sympathetic nerve activity) and blood flow, and to determine the mechanisms involved. We examined 68 normal subjects, 34 women and 34 men, matched for age, BMI (body mass index) and waist circumference. MSNA was measured as the mean frequency of single units (s-MSNA) and as multi-unit bursts (m-MSNA) from the peroneal nerve simultaneously with its supplied muscle CBF (calf blood flow). Women had lower (P=0.0007) s-MSNA (24±2.0 impulses/100 cardiac beats) than men (34±2.3 impulses/100 cardiac beats), and a greater baroreceptor reflex sensitivity controlling efferent sympathetic nerve activity than men. The sympathetic activity was inversely and directly correlated respectively, with CBF (P=0.03) and CVR (calf vascular resistance; P=0.01) in men only. The responses of an increase in CVR to cold pressor and isometric handgrip tests were significantly smaller in women (P=0.002) than in men, despite similar increases in efferent sympathetic nerve activity. Women had a lower central sympathetic neural output to the periphery, the mechanism of which involved differences in central and reflex control, as well as a lower vasoconstrictor response to this neural output. It is suggested that this may partly explain the observed lower incidence of cardiovascular events in women compared with men.


2009 ◽  
Vol 296 (5) ◽  
pp. R1439-R1444 ◽  
Author(s):  
Jonathan S. Cook ◽  
Chester A. Ray

Previous studies from our laboratory have demonstrated that altering muscle temperature of the exercising forearm can elicit changes in muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. The purpose of the current study was to determine the interactive effect of muscle temperature and blood flow on MSNA responses during dynamic handgrip (DHG). Eight subjects performed two bouts of graded DHG to fatigue followed by 2 min of postexercise muscle ischemia (PEMI). Local heating of the forearm increased muscle temperature from 33.6 ± 0.3 to 38.3 ± 0.5°C ( P < 0.05). Mean arterial pressure and heart rate increased in a linear fashion during graded DHG ( P < 0.05) but were not affected by muscle temperature. MSNA (burst frequency and total activity) at fatigue and PEMI were elevated in all conditions ( P < 0.05). However, MSNA responses were not different between temperature conditions. To ascertain the effect of blood flow, eight additional subjects completed two trials of ischemic DHG under control or warm conditions followed by 2 min of PEMI. MSNA, expressed as burst frequency and total activity, was significantly greater in warm compared with the control trial (Δ14 ± 3 and Δ9 ± 2 bursts/30 s, and Δ1,234 ± 260 and Δ751 ± 199 units/30 s, respectively). This finding supports the concept that muscle heating sensitizes skeletal muscle afferents during muscle contractions and augments MSNA in humans. However, on the basis of these findings, we conclude that muscle blood flow modulates the effect of muscle temperature on MSNA during exercise.


Sign in / Sign up

Export Citation Format

Share Document