Quinone exchange in the QA binding site of Photosystem II reaction center core preparations isolated from Chlamydomonas reinhardtii

1988 ◽  
Vol 934 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Bruce A. Diner ◽  
Catherine de Vitry ◽  
Jean-Luc Popot
2007 ◽  
Vol 85 (6) ◽  
pp. 721-729 ◽  
Author(s):  
Tessa Pocock ◽  
P. V. Sane ◽  
S. Falk ◽  
N. P.A. Hüner

Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 °C resulted in comparable downward shifts in the temperature peak maxima (TM) for S2QB– charge pair recombination events, with minimal changes in S2QA– recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB– charge pair recombination events with no concomitant change in the activation energy for S2QA– recombination events. This resulted in a decrease in the ΔTM between S2QA– and S2QB– recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 °C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the ΔTM between S2QA– and S2QB– recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.


1982 ◽  
Vol 93 (3) ◽  
pp. 712-718 ◽  
Author(s):  
G C Owens ◽  
I Ohad

Phosphorylation of thylakoid membrane proteins in the chloroplast of wild-type and mutant strains of Chlamydomonas reinhardi has been studied in vivo and in vitro. Intact cells or purified membranes were labeled with [32P]orthophosphate or [gamma-32P]ATP, respectively, and the presence of phosphorylated polypeptides was detected by autoradiography after membrane fractionation by SDS PAGE. The 32P was esterified to serine and threonine residues. At least six polypeptides were phosphorylated in vitro and in vivo, and corresponded to components of the photosystem II complex contributing to the formation of the light-harvesting-chlorophyll (LHC) a,b-protein complex, the DCMU binding site (32-35 kdaltons), and the reaction center (26 kdaltons). In agreement with previous reports (Alfonzo, et al., 1979, Plant Physiol., 65:730-734; and Bennett, 1979, FEBS (Fed. Eur. Biochem. Soc.) Lett., 103:342-344), the membrane-bound protein kinase was markedly stimulated by light in vitro via a mechanism requiring photosystem II activity. Phosphorylation of thylakoid membrane polypeptides in vivo was, however, completely independent of illumination. Similar amounts of phosphate were incorporated into the photosynthetic membranes of cells incubated in the dark, in white light with or without 3-(3,4-dichlorophenyl-1,1-dimethyl urea (DCMU), or in red or far-red light. Different turnovers of the phosphate were observed in the light and dark, and a phosphoprotein phosphatase involved in this turnover process was also associated with the membrane. Comparison of the amount of esterified phosphate per protein in vivo and the maximum incorporation in isolated membranes revealed that only a small fraction of the available sites could be phosphorylated in vitro. In contrast to the DCMU binding site, the LHC and 26-kdalton polypeptide were not phosphorylated in vivo when the reaction center II polypeptides of 44-54 kdaltons were missing. The finding that all the phosphoproteins appear to be components of the photosystem II complex and are only partially dephosphorylated in vivo suggests strongly that protein phosphorylation might play an important role in the maintenance of the organizational integrity of this complex. The observation that the LHC is not phosphorylated in the absence of the reaction center lends support to this idea.


2012 ◽  
Vol 116 (16) ◽  
pp. 4860-4870 ◽  
Author(s):  
Khem Acharya ◽  
Valter Zazubovich ◽  
Mike Reppert ◽  
Ryszard Jankowiak

1990 ◽  
Vol 45 (5) ◽  
pp. 395-401 ◽  
Author(s):  
Susana Shochat ◽  
Noam Adir ◽  
Alma Gal ◽  
Yorinao Inoue ◽  
Laurence Mets ◽  
...  

Abstract The effect of unoccupancy of the QB site by plastoquinone on the photoinactivation of reaction center II in a Cyt b6/f-less mutant of Chlamydomonas reinhardtii, B6, was investigated. In these cells the oxidation of plastoquinol generated by electron flow via RC II to plastoquinone and thus the turnover of PQH2/PQ via the QB site are drastically reduced. Reaction center II of the mutant cells was resistant to photoinactivation relative to the control cells as demonstrated by measurements of light-induced destabilization of S2-QB charge recombination, rise in in­ trinsic fluorescence and loss of variable fluorescence. These parameters relate to functions in­ volving the reaction center II D1 protein. The light-induced degradation of D1 in the mutant cells was also considerably reduced, with a t 1/2 value of 7 h as compared, under similar conditions, to about 1.5 h for the control cells. These results indicate that the photoinactivation of RC II and turnover of the D1 protein are related and require occupancy of the QB site by PQ and its light-driven reduction.


Sign in / Sign up

Export Citation Format

Share Document