high irradiance
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 85)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Armando Mendoza-Flores ◽  
Clara Elizabeth Galindo-Sánchez ◽  
M. del Pilar Sánchez-Saavedra

Abstract The irradiance level used to the microalgae cultures can modify the growth and proximate composition, however, this response is specie specific. The dinoflagellate group had the potential to be used as a source to biofuel production. In this study was evaluated the effect of five irradiance levels (50, 100, 150, 200, and 250 µmol photon m-2 s­-1) on the growth rate, proximal composition, pigment content, and photosynthesis of Amphidinium carterae. The highest cell concentration was for the cultures at 150 µmol photon m-2 s-1 (130 × 103 cells mL-1), and the lowest values for 50 µmol photon m-2 s-1 (49 × 103 cells mL-1). The cultures maintained under the low irradiance (50 µmol photon m-2 s-1) had the highest values of total dry weight (TDW) (13418 pg cell-1), organic dry weight (ODW) (3836 pg cell-1), and inorganic dry weight (IDW) (9582 pg cell-1). The protein content as the general trend increases significantly concerning the irradiance level, with the higher values (87.47 pg cell-1) at high irradiance (250 µmol photon m-2 s-1). Carbohydrate content was different by the effect of irradiance, with the higher values (32.85 pg cell-1) at the low irradiance used (50 µmol photon m-2 s-1). Lipid content was modified by the effect of irradiance, with the highest values (534.74 pg cell-1) at the low irradiance used (50 µmol photon m-2 s-1). As a general trend, the high irradiances increased the photosynthesis curves. These findings demonstrate that the strain of A. carterae used in this work can grow in high irradiances (100 to 250 µmol photon m-2 s-1) and increase significantly the lipid content on low irradiance used (50 µmol photon m-2 s-1).


2021 ◽  
pp. 112067212110697
Author(s):  
Mohammed Ziaei ◽  
Jinny J Yoon ◽  
Hans R Vellara ◽  
Akilesh Gokul ◽  
Jay J Meyer ◽  
...  

Purpose To characterize corneal biomechanical properties utilizing a dynamic ultra-high-speed Scheimpflug camera equipped with a non-contact tonometer (CorVis ST, CST) in keratoconic corneas following continuous high intensity, high irradiance corneal cross-linking. Design Prospective longitudinal single-centre study at a tertiary referral center. Methods Corneal biomechanical properties were measured in patients with progressive keratoconus undergoing high intensity (30 mW/cm2), high irradiance (5.4 J/cm2), accelerated corneal cross-linking with continuous exposure to ultraviolet-A for 4 min. CST was used to assess corneal biomechanical properties pre-operatively and at 1, 3, 6 and 12 months post-operatively. CST output videos were further analyzed using several previously reported algorithms. Results A total of 25 eyes of 25 participants were examined. The mean age of participants was 20.9 ± 5.3 years; 56% were male and 80% were of Māori or Pacific Island origin. Energy absorbed area (mN mm), was the only significantly changed parameter compared to baseline at all time points measuring 3.61 ± 1.19 preoperatively, 2.81 ± 1.15 at 1 month ( p = 0.037), 2.79 ± 0.81 ( p = 0.033) at 3 months, 2.76 ± 0.95 ( p = 0.028) at 6 months and 2.71 ± 1.18 ( p = 0.016) at 12 months. Conclusions The significant difference between the pre and post-operative energy absorbed area appears to reflect changes in corneal viscous properties that occur following corneal cross-linking.


2021 ◽  
Vol 40 ◽  
Author(s):  
Johanna Marambio ◽  
Kai Bischof

Arctic fjord systems experience large amplitudes of change in temperature and radiation regime due to climate warming and the related decrease in sea ice. The resultant increase in irradiance entering the water column influences photosynthetic activity of benthic and pelagic primary producers. The subtidal brown alga Desmarestia aculeata and the intertidal red alga Palmaria palmata populate the cold-temperate coasts of the North Atlantic, reaching the polar zone. To evaluate their acclimation potential, we collected both species in Kongsfjorden, Svalbard (78.9°N, 11.9°E), during the Arctic summer and exposed specimens to two different PAR levels (50 and 500 μmol photons m−2 s−1) and temperatures (0, 4 and 8 °C) for 21 days. Photosynthetic parameters and biochemical features (pigment concentration and antioxidants) were assessed. In general, high irradiance was the factor that generated a negative effect for D. aculeata and P. palmata in the photosynthetic parameters of the photosynthesis–irradiance curve and Fv/Fm. The pigment concentration in both species tended to decrease with increasing irradiance. Antioxidant level showed different trends for both species: in D. aculeata, antioxidant potential increased with high irradiance and temperature, while in P. palmata, it only increased with high irradiance. Both species showed responses to the interaction of irradiance and temperature, although D. aculeata was more sensitive to high irradiance than P. palmata. Our study shows how these species, which have similar geographical distribution in the North Atlantic and the Arctic but belong to different taxonomic lineages, have similar strategies of acclimation, although they respond differently to ecophysiological parameters.


2021 ◽  
Author(s):  
Olaniyi O Ajala ◽  
Kathryn R Kidd ◽  
Brian P Oswald ◽  
Yuhui Weng ◽  
Jeremy P Stovall

Abstract A greenhouse experiment was designed to determine the interactive effect of light, flooding, and competition on the growth and performance of Chinese tallow (Triadica sebifera [L.] Roxb.) and three tree species native to the southeastern United States: water tupelo (Nyssa aquatica L.), sugarberry (Celtis occidentalis L.), and green ash (Fraxinus pennsylvanica Marshall). The experiment used a factorial design that received two treatments: light (low irradiance or high irradiance) and flood (nonflooded and flooded) regimes. In the nonflooded and high irradiance treatment, changes in the growth (ground diameter, number of leaves, and total biomass) indicated that growth metrics of tallow were highest when growing with sugarberry and water tupelo but decreased when tallow was in competition with green ash. In contrast, competition with tallow reduced the height, net photosynthetic rate, stomatal conductance, and transpiration rate of water tupelo. The results showed that tallow had lower growth metrics when in competition with green ash at no apparent decrease in the growth of green ash except for growth rate. Our results suggest that tallow may be less competitive with certain native species and underplanting may be a possible opportunity for improving the success rates of native trees species establishment in areas prone to tallow invasion. Study Implications: Chinese tallow is a highly invasive tree species in the southeastern coastal states and in this study, we examined the growth and survival of tallow in competition with tree species native to the southeastern coastal states, USA. The growth of tallow differed greatly among native species in well-drained environments lacking forest overstory with lower growth metrics when grown with green ash but higher growth metrics when grown with water tupelo and sugarberry. Following density reduction treatments, we recommend management actions that promote the regeneration of native tree species to occupy the open vegetation canopy and suppress reestablishment of tallow.


2021 ◽  
Author(s):  
Mengmeng Li ◽  
Baiqin Zhao ◽  
Lei Han ◽  
Zhen Wang

It is acknowledged that the inactivation of ultraviolet has been widely used in various fields. Much literature has been reported that ultraviolet C caused DNA damage to achieve inactivation of microorganisms. There is a lack of unified dose calibration and related parameters in this field. In this study, we used a device consisted of the LED of 272 nm to conduct sterilization experiments against A. baumanii. We confirmed the effectiveness of ultraviolet C sterilization for both sensitive and drug resistance strains and explored the relationship between bactericidal rate and ultraviolet doses under various irradiance. Dose requirements of various irradiance were clarified. High irradiance improved sterilization efficiency greatly. The overall damage to the total genome was observed though gel electrophoresis. Ultrastructures of damaged bacteria were investigated by transmission electron microscope in detail. The study revealed that damage to DNA and to the cytoplasm matrix and ribosomes. The study has yielded the possible effects of ultraviolet light on cells by amplifying the energy. The radiation significantly promoted the production of cell wall and cellular membrane.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2483
Author(s):  
Alain Fortineau ◽  
Didier Combes ◽  
Céline Richard-Molard ◽  
Ela Frak ◽  
Alexandra Jullien

Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 499
Author(s):  
Ida Izadi ◽  
Vanessa Dusend ◽  
Abdulaziz Takrouni ◽  
Noreen Nudds ◽  
Kamil Gradkowski ◽  
...  

Control of heart rhythm is vital in the case of arrhythmia. Cardiac optogenetics is a promising technique to replace electrical stimulation in a next generation of pacemakers and defibrillators. Therefore, further research towards optimizing light delivery methods is essential. A major requirement is the uniform stimulation of all cells in the area of interest while reducing side effects such as photodamage. Here, a 2 × 2 blue (470 nm, InGaN-based) light-emitting diode (LED) optoelectronic module for uniform ex vivo cardiac muscle illumination is demonstrated. It satisfies two important requirements in optogenetics, which are high illumination homogeneity and high irradiance. CCD camera images show an average 90% homogeneity over the central illumination area of close to 38 mm2 at 1 cm distance from the light source. The module is used to perform physiological experiments on channelrhodopsin 2-expressing Langendorff-perfused mouse hearts. Successful ventricular pacing is obtained for an optical power density threshold below 2 mW/mm2 with light pulses as short as 1 ms. For 10 ms long pulses, the threshold was below 0.2 mW/mm2. The large homogeneous illumination area enabled optogenetic pacing with less than half the optical power of previous attempts with smaller areas of 2 mm2 and thus, presumably, will result in less phototoxicity.


2021 ◽  
Vol 40 (3) ◽  
pp. 414-426
Author(s):  
G. Takyi ◽  
A.S. Adunyah ◽  
A. Agyei-Agyemang

One of the biggest drawbacks of photovoltaic (PV) for many applications is the uncertainty in the energy output due to losses attributed to efficiency loss at low irradiance levels. In this study, the electrical performance of as received monocrystalline silicon (mono-c-Si) and polycrystalline silicon (poly-c-Si) PV modules were evaluated at high and low irradiance conditions in Kumasi, Ghana using I-V Tracer. The low irradiance level of 200W/m2 was achieved by covering the surface of the PV modules with a calibrated mesh screen. Maximum output power (Pmax) of 87.9 W and 136.7 W were recorded for the mono-c-Si and poly-c-Si modules at high irradiance respectively. The corresponding average values at low irradiance were 8.29 W and 12.13 W representing percentage reductions of 90.57% and 91.60% respectively for the two technologies. These results indicate that when irradiance drops to 200 W/m2 and below, the PV modules generate around only 10% of their nominal output power. This has implications for the number of modules that are required for installation in areas that experience many hours of low irradiance. Efficiency reductions of 64.4% and 59.01% for the mono-c-Si and poly-c-Si modules respectively at low irradiance is reported. The results also indicate that the mono-c-Si is affected more by light induced degradation effect than the poly-c-Si module after a few hours of exposure to the natural light. The novelty of this work is that knowledge of the performance at low irradiance will enable designers determine the number of modules required during the sizing of PV plants.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2162
Author(s):  
Shiren J. Mohamed ◽  
Hail Z. Rihan ◽  
Naofel Aljafer ◽  
Michael P. Fuller

This study focused on the physiology, growth and antioxidant activity response of hydroponically grown lettuce (Lactuca sativa L.) under sole-source LED lighting of differing spectra. Lighting spectra were provided by differing combinations of LEDs of three different peak wavelengths, (Blue 435, Blue 450, and Red 663 nm) with ratios of B450/R663: 1.25 ± 0.1, B450/R663: 1.25 ± 0.1, and B450/R663 1:1 at two light intensities of photosynthetically active radiation (PAR) (270 μmol m−2 s−1 and 60 μmol m−2 s−1). A further experiment was conducted, in which Blue and Red LEDs were supplemented with Green (Blue 450, Red 663, and Green 520 nm) with ratios of B435/R663: 1.25 ± 0.1, B450/R663/G520: 1/0.73/0.26, and B450/R663: 1.25 ± 0.1. LED light intensities under the different spectra were adjusted to deliver the same level of PAR (270 ± 20 μmol m−2 s−1). Results from the first experiment showed that increased fraction of blue 435 nm in combination with red light at 663 nm at high irradiance enhanced the physiology of lettuce (i.e., significantly increased assimilation rate, stomatal conductance and transpiration rate) and increased the yield while having no significant effect on antioxidant activity. At the lower irradiance, the B435/R663 significantly increased antioxidant activity compared to other spectra. Results from the second experiment showed no significant effect of the spectra of LEDs on the physiology and yield of lettuce, but antioxidant activity was very significantly induced by B450/R663 at the ratio of 1.25 ± 0.1. However, the amount was still less than that obtained by B435/R663 1.25 ± 0.1 from the first experiment. This study indicates that LED light with a spectrum of B435/R663 at a ratio of 1.25 ± 0.1 significantly improves lettuce yield and antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document