scholarly journals Phosphorylation of chlamydomonas reinhardi chloroplast membrane proteins in vivo and in vitro.

1982 ◽  
Vol 93 (3) ◽  
pp. 712-718 ◽  
Author(s):  
G C Owens ◽  
I Ohad

Phosphorylation of thylakoid membrane proteins in the chloroplast of wild-type and mutant strains of Chlamydomonas reinhardi has been studied in vivo and in vitro. Intact cells or purified membranes were labeled with [32P]orthophosphate or [gamma-32P]ATP, respectively, and the presence of phosphorylated polypeptides was detected by autoradiography after membrane fractionation by SDS PAGE. The 32P was esterified to serine and threonine residues. At least six polypeptides were phosphorylated in vitro and in vivo, and corresponded to components of the photosystem II complex contributing to the formation of the light-harvesting-chlorophyll (LHC) a,b-protein complex, the DCMU binding site (32-35 kdaltons), and the reaction center (26 kdaltons). In agreement with previous reports (Alfonzo, et al., 1979, Plant Physiol., 65:730-734; and Bennett, 1979, FEBS (Fed. Eur. Biochem. Soc.) Lett., 103:342-344), the membrane-bound protein kinase was markedly stimulated by light in vitro via a mechanism requiring photosystem II activity. Phosphorylation of thylakoid membrane polypeptides in vivo was, however, completely independent of illumination. Similar amounts of phosphate were incorporated into the photosynthetic membranes of cells incubated in the dark, in white light with or without 3-(3,4-dichlorophenyl-1,1-dimethyl urea (DCMU), or in red or far-red light. Different turnovers of the phosphate were observed in the light and dark, and a phosphoprotein phosphatase involved in this turnover process was also associated with the membrane. Comparison of the amount of esterified phosphate per protein in vivo and the maximum incorporation in isolated membranes revealed that only a small fraction of the available sites could be phosphorylated in vitro. In contrast to the DCMU binding site, the LHC and 26-kdalton polypeptide were not phosphorylated in vivo when the reaction center II polypeptides of 44-54 kdaltons were missing. The finding that all the phosphoproteins appear to be components of the photosystem II complex and are only partially dephosphorylated in vivo suggests strongly that protein phosphorylation might play an important role in the maintenance of the organizational integrity of this complex. The observation that the LHC is not phosphorylated in the absence of the reaction center lends support to this idea.

1984 ◽  
Vol 98 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F A Wollman ◽  
P Delepelaire

We have used a new method to extensively modify the redox state of the plastoquinone pool in Chlamydomonas reinhardtii intact cells. This was achieved by an anaerobic treatment that inhibits the chlororespiratory pathway recently described by P. Bennoun (Proc. Natl. Acad. Sci. USA, 1982, 79:4352-4356). A state I (plus 3,4-dichlorophenyl-1,1-dimethylurea) leads to anaerobic state transition induced a decrease in the maximal fluorescence yield at room temperature and in the FPSII/FPSI ratio at 77 degrees K, which was three times larger than in a classical state I leads to state II transition. The fluorescence changes observed in vivo were similar in amplitude to those observed in vitro upon transfer to the light of dark-adapted, broken chloroplasts incubated in the presence of ATP. We then compared the phosphorylation pattern of thylakoid polypeptides in C. reinhardtii in vitro and in vivo using gamma-[32P]ATP and [32P]orthophosphate labeling, respectively. The same set of polypeptides, mainly light-harvesting complex polypeptides, was phosphorylated in both cases. We observed that this phosphorylation process is reversible and is mediated by the redox state of the plastoquinone pool in vivo as well as in vitro. Similar changes of even larger amplitude were observed with the F34 mutant intact cells lacking in photosystem II centers. The presence of the photosystem II centers is then not required for the occurrence of the plastoquinone-mediated phosphorylation of light-harvesting complex polypeptides.


1993 ◽  
Vol 13 (11) ◽  
pp. 6866-6875 ◽  
Author(s):  
D C Hagen ◽  
L Bruhn ◽  
C A Westby ◽  
G F Sprague

Transcription activation of alpha-specific genes in Saccharomyces cerevisiae is regulated by two proteins, MCM1 and alpha 1, which bind to DNA sequences, called P'Q elements, found upstream of alpha-specific genes. Neither MCM1 nor alpha 1 alone binds efficiently to P'Q elements. Together, however, they bind cooperatively in a manner that requires both the P' sequence, which is a weak binding site for MCM1, and the Q sequence, which has been postulated to be the binding site for alpha 1. We analyzed a collection of point mutations in the P'Q element of the STE3 gene to determine the importance of individual base pairs for alpha-specific gene transcription. Within the 10-bp conserved Q sequence, mutations at only three positions strongly affected transcription activation in vivo. These same mutations did not affect the weak binding to P'Q displayed by MCM1 alone. In vitro DNA binding assays showed a direct correlation between the ability of the mutant sequences to form ternary P'Q-MCM1-alpha 1 complexes and the degree to which transcription was activated in vivo. Thus, the ability of alpha 1 and MCM1 to bind cooperatively to P'Q elements is critical for activation of alpha-specific genes. In all natural alpha-specific genes the Q sequence is adjacent to the degenerate side of P'. To test the significance of this geometry, we created several novel juxtapositions of P, P', and Q sequences. When the Q sequence was opposite the degenerate side, the composite QP' element was inactive as a promoter element in vivo and unable to form stable ternary QP'-MCM1-alpha 1 complexes in vitro. We also found that addition of a Q sequence to a strong MCM1 binding site allows the addition of alpha 1 to the complex. This finding, together with the observation that Q-element point mutations affected ternary complex formation but not the weak binding of MCM1 alone, supports the idea that the Q sequence serves as a binding site for alpha 1.


1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


2008 ◽  
Vol 412 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Ekerot ◽  
Marios P. Stavridis ◽  
Laurent Delavaine ◽  
Michael P. Mitchell ◽  
Christopher Staples ◽  
...  

DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.


1991 ◽  
Vol 11 (2) ◽  
pp. 1048-1061
Author(s):  
I J Lee ◽  
L Tung ◽  
D A Bumcrot ◽  
E S Weinberg

A protein, denoted UHF-1, was found to bind upstream of the transcriptional start site of both the early and late H4 (EH4 and LH4) histone genes of the sea urchin Strongylocentrotus purpuratus. A nuclear extract from hatching blastulae contained proteins that bind to EH4 and LH4 promoter fragments in a band shift assay and produced sharp DNase I footprints upstream of the EH4 gene (from -133 to -106) and the LH4 gene (from -94 to -66). DNase I footprinting performed in the presence of EH4 and LH4 promoter competitor DNAs indicated that UHF-1 binds more strongly to the EH4 site. A sequence match of 11 of 13 nucleotides was found within the two footprinted regions: [sequence: see text]. Methylation interference and footprinting experiments showed that UHF-1 bound to the two sites somewhat differently. DNA-protein UV cross-linking studies indicated that UHF-1 has an electrophoretic mobility on sodium dodecyl sulfate-acrylamide gels of approximately 85 kDa and suggested that additional proteins, specific to each promoter, bind to each site. In vitro and in vivo assays were used to demonstrate that the UHF-1-binding site is essential for maximal transcription of the H4 genes. Deletion of the EH4 footprinted region resulted in a 3-fold decrease in transcription in a nuclear extract and a 2.6-fold decrease in expression in morulae from templates that had been injected into eggs. In the latter case, deletion of the binding site did not grossly disrupt the temporal program of expression from the injected EH4 genes. LH4 templates containing a 10-bp deletion in the consensus region or base substitutions in the footprinted region were transcribed at 14 to 58% of the level of the wild-type LH4 template. UHF-1 is therefore essential for maximal expression of the early and late H4 genes.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


2001 ◽  
Vol 69 (2) ◽  
pp. 1009-1015 ◽  
Author(s):  
Alan G. Barbour ◽  
Virgilio Bundoc

ABSTRACT The antigenic variation of the relapsing fever agent Borrelia hermsii is associated with changes in the expression of the Vlp and Vsp outer membrane lipoproteins. To investigate whether these serotype-defining proteins are the target of a neutralizing and protective antibody response, monoclonal antibodies were produced from spleens of infected mice just after clearance of serotype 7 cells from the blood. Two immunoglobulin M monoclonal antibodies, H7-7 and H7-12, were studied in detail. Both antibodies specifically agglutinated serotype 7 cells and inhibited their growth in vitro. Administered to mice before or after infection, both antibodies provided protection against infection or substantially reduced the number of spirochetes in the blood of mice after infection. Whereas antibody H7-12 bound to Vlp7 in Western blotting, enzyme-linked immunosorbent assay, and immunoprecipitation assays, as well as to whole cells in other immunoassays, antibody H7-7 only bound to wet, intact cells of serotype 7. Antibody H7-7 selected against cells expressing Vlp7 in vitro and in vivo, an indication that Vlp7 was a conformation-sensitive antigen for the antibody. Vaccination of mice with recombinant Vlp7 with adjuvant elicited antibodies that bound to fixed whole cells of serotype 7 and to Vlp7 in Western blots, but these antibodies did not inhibit the growth of serotype 7 in vitro and did not provide protection against an infectious challenge with serotype 7. The study established that a Vlp protein was the target of a neutralizing antibody response, and it also indicated that the conformation and/or the native topology of Vlp were important for eliciting that immunity.


1997 ◽  
Vol 153 (3) ◽  
pp. 453-464 ◽  
Author(s):  
C H Blomquist ◽  
B S Leung ◽  
C Beaudoin ◽  
D Poirier ◽  
Y Tremblay

Abstract There is growing evidence that various isoforms of 17β-hydroxysteroid dehydrogenase (17-HSD) are regulated at the level of catalysis in intact cells. A number of investigators have proposed that the NAD(P)/NAD(P)H ratio may control the direction of reaction. In a previous study, we obtained evidence that A431 cells, derived from an epidermoid carcinoma of the vulva, are enriched in 17-HSD type 2, a membrane-bound isoform reactive with C18 and C19 17β-hydroxysteroids and 17-ketosteroids. The present investigation was undertaken to confirm the presence of 17-HSD type 2 in A431 cells and to assess intracellular regulation of 17-HSD at the level of catalysis by comparing the activity of homogenates and microsomes with that of cell monolayers. Northern blot analysis confirmed the presence of 17-HSD type 2 mRNA. Exposure of cells to epidermal growth factor resulted in an increase in type 2 mRNA and, for microsomes, increases in maximum velocity (Vmax) with no change in Michaelis constant (Km) for testosterone and androstenedione, resulting in equivalent increases in the Vmax/Km ratio consistent with the presence of a single enzyme. Initial velocity data and inhibition patterns were consistent with a highly ordered reaction sequence in vitro in which testosterone and androstenedione bind only to either an enzyme–NAD or an enzyme–NADH complex respectively. Microsomal dehydrogenase activity with testosterone was 2- to 3-fold higher than reductase activity with androstenedione. In contrast, although cell monolayers rapidly converted testosterone to androstenedione, reductase activity with androstenedione or dehydroepiandrosterone (DHEA) was barely detectable. Lactate but not glucose, pyruvate or isocitrate stimulated the conversion of androstenedione to testosterone by monolayers, suggesting that cytoplasmic NADH may be the cofactor for 17-HSD type 2 reductase activity with androstenedione. However, exposure to lactate did not result in a significant change in the NAD/NADH ratio of cell monolayers. It appears that within A431 cells 17-HSD type 2 is regulated at the level of catalysis to function almost exclusively as a dehydrogenase. These findings give further support to the concept that 17-HSD type 2 functions in vivo principally as a dehydrogenase and that its role as a reductase in testosterone formation by either the Δ4 or Δ5 pathway is limited. Journal of Endocrinology (1997) 153, 453–464


2002 ◽  
Vol 22 (13) ◽  
pp. 4890-4901 ◽  
Author(s):  
Sophie Deltour ◽  
Sébastien Pinte ◽  
Cateline Guerardel ◽  
Bohdan Wasylyk ◽  
Dominique Leprince

ABSTRACT HIC1 (hypermethylated in cancer) and its close relative HRG22 (HIC1-related gene on chromosome 22) encode transcriptional repressors with five C2H2 zinc fingers and an N-terminal BTB/POZ autonomous transcriptional repression domain that is unable to recruit histone deacetylases (HDACs). Alignment of the HIC1 and HRG22 proteins from various species highlighted a perfectly conserved GLDLSKK/R motif highly related to the consensus CtBP interaction motif (PXDLSXK/R), except for the replacement of the virtually invariant proline by a glycine. HIC1 strongly interacts with mCtBP1 both in vivo and in vitro through this conserved GLDLSKK motif, thus extending the CtBP consensus binding site. The BTB/POZ domain does not interact with mCtBP1, but the dimerization of HIC1 through this domain is required for the interaction with mCtBP1. When tethered to DNA by fusion with the Gal4 DNA-binding domain, the HIC1 central region represses transcription through interactions with CtBP in a trichostatin A-sensitive manner. In conclusion, our results demonstrate that HIC1 mediates transcriptional repression by both HDAC-independent and HDAC-dependent mechanisms and show that CtBP is a HIC1 corepressor that is recruited via a variant binding site.


Sign in / Sign up

Export Citation Format

Share Document