Branched fatty acids from mycobacterium aurum

Author(s):  
Elie Rafidinarivo ◽  
Arlette Savagnac ◽  
Charlotte Lacave ◽  
Jean-Claude Prome
2007 ◽  
Vol 73 (24) ◽  
pp. 7882-7890 ◽  
Author(s):  
Vincent Grossi ◽  
Cristiana Cravo-Laureau ◽  
Alain Méou ◽  
Danielle Raphel ◽  
Frédéric Garzino ◽  
...  

ABSTRACT The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(ω-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium.


1999 ◽  
Vol 40 (4) ◽  
pp. 601-609 ◽  
Author(s):  
Kathleen Croes ◽  
Minne Casteels ◽  
Martine Dieuaide-Noubhani ◽  
Guy P. Mannaerts ◽  
Paul P. Van Veldhoven

ChemBioChem ◽  
2010 ◽  
Vol 11 (18) ◽  
pp. 2572-2578 ◽  
Author(s):  
Thomas Hochmuth ◽  
Holger Niederkrüger ◽  
Christine Gernert ◽  
Alexander Siegl ◽  
Stefan Taudien ◽  
...  

2012 ◽  
Vol 78 (24) ◽  
pp. 8650-8656 ◽  
Author(s):  
Dorien M. Kool ◽  
Baoli Zhu ◽  
W. Irene C. Rijpstra ◽  
Mike S. M. Jetten ◽  
Katharina F. Ettwig ◽  
...  

ABSTRACTThe recently described bacterium “CandidatusMethylomirabilis oxyfera” couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of “Ca. Methylomirabilis oxyfera” is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of “Ca. Methylomirabilis oxyfera” to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple “Ca. Methylomirabilis oxyfera” enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC16:0). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC16:1Δ7), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC16:0and 10MeC16:1Δ7are key and characteristic components of the lipid profile of “Ca. Methylomirabilis oxyfera.” The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.


Sign in / Sign up

Export Citation Format

Share Document