methyl branched fatty acids
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 4)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Henrik Drake ◽  
Nick M. W. Roberts ◽  
Manuel Reinhardt ◽  
Martin Whitehouse ◽  
Magnus Ivarsson ◽  
...  

AbstractEarth’s crust contains a substantial proportion of global biomass, hosting microbial life up to several kilometers depth. Yet, knowledge of the evolution and extent of life in this environment remains elusive and patchy. Here we present isotopic, molecular and morphological signatures for deep ancient life in vein mineral specimens from mines distributed across the Precambrian Fennoscandian shield. Stable carbon isotopic signatures of calcite indicate microbial methanogenesis. In addition, sulfur isotope variability in pyrite, supported by stable carbon isotopic signatures of methyl-branched fatty acids, suggest subsequent bacterial sulfate reduction. Carbonate geochronology constrains the timing of these processes to the Cenozoic. We suggest that signatures of an ancient deep biosphere and long-term microbial activity are present throughout this shield. We suggest that microbes may have been active in the continental igneous crust over geological timescales, and that subsurface investigations may be valuable in the search for extra-terrestrial life.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hannah G. Blitzblau ◽  
Andrew L. Consiglio ◽  
Paulo Teixeira ◽  
Donald V. Crabtree ◽  
Shuyan Chen ◽  
...  

Abstract Background Despite the environmental value of biobased lubricants, they account for less than 2% of global lubricant use due to poor thermo-oxidative stability arising from the presence of unsaturated double bonds. Methyl branched fatty acids (BFAs), particularly those with branching near the acyl-chain mid-point, are a high-performance alternative to existing vegetable oils because of their low melting temperature and full saturation. Results We cloned and characterized two pathways to produce 10-methyl BFAs isolated from actinomycetes and γ-proteobacteria. In the two-step bfa pathway of actinomycetes, BfaB methylates Δ9 unsaturated fatty acids to form 10-methylene BFAs, and subsequently, BfaA reduces the double bond to produce a fully saturated 10-methyl branched fatty acid. A BfaA-B fusion enzyme increased the conversion efficiency of 10-methyl BFAs. The ten-methyl palmitate production (tmp) pathway of γ-proteobacteria produces a 10-methylene intermediate, but the TmpA putative reductase was not active in E. coli or yeast. Comparison of BfaB and TmpB activities revealed a range of substrate specificities from C14-C20 fatty acids unsaturated at the Δ9, Δ10 or Δ11 position. We demonstrated efficient production of 10-methylene and 10-methyl BFAs in S. cerevisiae by secretion of free fatty acids and in Y. lipolytica as triacylglycerides, which accumulated to levels more than 35% of total cellular fatty acids. Conclusions We report here the characterization of a set of enzymes that can produce position-specific methylene and methyl branched fatty acids. Yeast expression of bfa enzymes can provide a platform for the large-scale production of branched fatty acids suitable for industrial and consumer applications.


2014 ◽  
Vol 118 (48) ◽  
pp. 13838-13848 ◽  
Author(s):  
David Poger ◽  
Bertrand Caron ◽  
Alan E. Mark

2014 ◽  
Vol 16 (33) ◽  
pp. 17869-17882 ◽  
Author(s):  
Jonathan F. D. Liljeblad ◽  
Eric Tyrode ◽  
Esben Thormann ◽  
Ann-Claude Dublanchet ◽  
Gustavo Luengo ◽  
...  

The morphology and molecular conformation of monolayers of straight chain and methyl-branched fatty acids have been investigated by VSFS and AFM, revealing domains in the latter case, due to inverse micellar packing constraints.


ChemBioChem ◽  
2010 ◽  
Vol 11 (18) ◽  
pp. 2473-2473
Author(s):  
Thomas Hochmuth ◽  
Holger Niederkrüger ◽  
Christine Gernert ◽  
Alexander Siegl ◽  
Stefan Taudien ◽  
...  

ChemBioChem ◽  
2010 ◽  
Vol 11 (18) ◽  
pp. 2572-2578 ◽  
Author(s):  
Thomas Hochmuth ◽  
Holger Niederkrüger ◽  
Christine Gernert ◽  
Alexander Siegl ◽  
Stefan Taudien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document