muramyl dipeptide
Recently Published Documents


TOTAL DOCUMENTS

676
(FIVE YEARS 63)

H-INDEX

48
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3492
Author(s):  
Fu-Chen Huang

Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature.


2021 ◽  
Author(s):  
Margarita Salova ◽  
Wolfgang Sipos ◽  
Erwin Tschachler ◽  
Leopold Eckhart

AbstractNOD-like receptors (NLRs) are sensors of pathogen-associated molecular patterns with critical roles in the control of immune responses and programmed cell death. Recent studies have revealed inter-species differences in mammalian innate immune genes and a particular degeneration of nucleic acid sensing pathways in pangolins, which are currently investigated as potential hosts for zoonotic pathogens. Here, we used comparative genomics to determine which NLR genes are conserved or lost in pangolins and related mammals. We show that NOD2, which is implicated in sensing bacterial muramyl dipeptide and viral RNA, is a pseudogene in pangolins, but not in any other mammalian species investigated. NLRC4 and NAIP are absent in pangolins and canine carnivorans, suggesting convergent loss of cytoplasmic sensing of bacterial flagellin in these taxa. Among NLR family pyrin domain containing proteins (NLRPs), skin barrier-related NLRP10 has been lost in pangolins after the evolutionary divergence from Carnivora. Strikingly, pangolins lack all NLRPs associated with reproduction (germ cells and embryonic development) in other mammals, i.e., NLRP2, 4, 5, 7, 8, 9, 11, 13, and 14. Taken together, our study shows a massive degeneration of NLR genes in pangolins and suggests that these endangered mammals may have unique adaptations of innate immunity and reproductive cell biology.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6352
Author(s):  
Vesna Petrović Peroković ◽  
Željka Car ◽  
Josip Draženović ◽  
Ranko Stojković ◽  
Lidija Milković ◽  
...  

Muramyl dipeptide (MDP) is the smallest peptidoglycan fragment able to trigger the immune response. Structural modification of MDP can lead to the preparation of analogs with improved immunostimulant properties, including desmuramyl peptides (DMPs). The aim of this work was to prepare the desmuramyl peptide (L-Ala-D-Glu)-containing adamantyl-triazole moiety and its mannosylated derivative in order to study their immunomodulatory activities in vivo. The adjuvant activity of the prepared compounds was evaluated in a murine model using ovalbumin as an antigen, and compared to the reference adjuvant ManAdDMP. The results showed that the introduction of the lipophilic adamantyl-triazole moiety at the C-terminus of L-Ala-D-Glu contributes to the immunostimulant activity of DMP, and that mannosylation of DMP modified with adamantyl-triazole causes the amplification of its immunostimulant activity.


Author(s):  
Liana R. Azizova ◽  
Tetiana V. Kulik ◽  
Borys B. Palianytsia ◽  
German M. Telbiz ◽  
Mykola T. Kartel

2021 ◽  
Author(s):  
R. Villarreal ◽  
H.S. Manzer ◽  
A.M. Keestra-Gounder ◽  
K.S. Doran

Streptococcus agalactiae (Group B Streptococcus , GBS), is an opportunistic pathogen capable of causing invasive disease in susceptible individuals including the newborn. Currently GBS is the leading cause of meningitis in the neonatal period. We have recently shown that GBS interacts directly with host type III intermediate filament vimentin to gain access to the central nervous system. This results in characteristic meningeal inflammation and disease progression; however, the specific role of vimentin in the inflammatory process is unknown. Here we investigate the contribution of vimentin to the pathogenesis of GBS meningitis. We show that a CRISPR targeted deletion of vimentin in human cerebral microvascular endothelial cells (hCMEC) reduced GBS induction of neutrophil attractants IL-8 and CXCL-1, as well as NFκB activation. We further show that inhibition of vimentin localization also prevented similar chemokine activation by GBS. One known chemokine regulator is the nucleotide-binding oligomerization domain containing protein 2 (NOD2), which is known to interact directly with vimentin. Thus, we hypothesized that NOD2 would also promote GBS chemokine induction. We show that GBS infection induced NOD2 transcription in hCMEC comparable to the muramyl dipeptide (MDP) NOD2 agonist, and the chemokine induction was reduced in the presence of a NOD2 inhibitor. Using a mouse model of GBS meningitis we also observed increased NOD2 transcript and NOD2 activation in brain tissue of infected mice. Lastly, we show that NOD2 mediated IL8 and CXCL1 induction required vimentin, further indicating the importance of vimentin in mediating inflammatory responses in brain endothelium.


2021 ◽  
pp. 105360
Author(s):  
Ivy Kekessie ◽  
Tatiana Goncharov ◽  
László G. Kőműves ◽  
Domagoj Vucic ◽  
Aimin Song

Author(s):  
Magdalena Wysocka ◽  
Krystyna Dzierzbicka ◽  
Beata Krawczyk

Search for new and efficient antibiotic is crucial because of microbial drug resistance and problems with side effects of the administered medication. In this study, we evaluate the in vitro microbiological activity of muramyl dipeptide derivatives, retro-tuftsin derivatives (i.e., tuftsin with reversed amino acid sequences), and combinations of retro-tuftsin derivatives with substituted anthraquinones. The potency of the investigated derivatives towards methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae ESBL (extended-spectrum β-lactamases) was compared based on the spectroscopically-measured minimal inhibitory concentrations (MIC values). The bacterial growth have also been studied with different concentrations of compounds. Statistical analysis of the results revealed that certain modifications lead to promising activity against S. aureus (anthraquinone analogue – 3c and retro-tuftsin derivative – 2b), while other derivatives exhibit activity against P. aeruginosa (muramyl dipeptide derivative – 1d and retro-tuftsin derivative – 2b). The obtained results of microbiological activity indicate that the structure of the tested compounds may be the basis for further modifications.


2021 ◽  
Author(s):  
Zheng-Rong Gao ◽  
Qiong Liu ◽  
Jie Zhao ◽  
Ya-Qiong Zhao ◽  
Li Tan ◽  
...  

Abstract Bone formation and loss are the characteristic clinical manifestations of leprosy, but the mechanisms underlying the bone remodeling with Mycobacterium leprae (M. leprae) infection are unclear. Osteocytes may have a role through regulating the differentiation of osteogenic lineages. To investigate osteocyte-related mechanisms in leprosy, we treated osteocyte-like cell with N-glycosylated muramyl dipeptide (N.g MDP). RNA-seq analysis showed 724 differentially expressed messenger RNAs (mRNAs) and 724 differentially expressed circular RNA (circRNAs). Of these, we filtered through eight osteogenic-related differentially expressed genes, according to the characteristic of competing endogenous RNA, PubMed databases, and bioinformation analysis, including TargetScan, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Based on these results, we built a circRNA–microRNA (miRNA)–mRNA triple network. Quantitative reverse-transcription polymerase chain reaction and western blots analyses confirmed decreased Clock expression in osteocyte-like cell, while increased in bone mesenchymal stem cells (BMSCs), implicating a crucial factor in osteogenic differentiation. Immunohistochemistry showed obviously increased expression of CLOCK protein in BMSCs and osteoblasts in N.g MDP–treated mice, but decreased expression in osteocytes. This analytical method provided a basis for the relationship between N.g MDP and remodeling in osteocytes, and the circRNA–miRNA–mRNA triple network may offer a new target for leprosy therapeutics.


2021 ◽  
Vol 6 (59) ◽  
pp. eabe5084
Author(s):  
Clare S. Hardman ◽  
Yi-Ling Chen ◽  
Maryam Salimi ◽  
Janina Nahler ◽  
Daniele Corridoni ◽  
...  

Cutaneous group 2 innate lymphoid cells (ILC2) are spatially and epigenetically poised to respond to barrier compromise and associated immunological threats. ILC2, lacking rearranged antigen-specific receptors, are primarily activated by damage-associated cytokines and respond with type 2 cytokine production. To investigate ILC2 potential for direct sensing of skin pathogens and allergens, we performed RNA sequencing of ILC2 derived from in vivo challenged human skin or blood. We detected expression of NOD2 and TLR2 by skin and blood ILC2. Stimulation of ILC2 with TLR2 agonist alone not only induced interleukin-5 (IL-5) and IL-13 expression but also elicited IL-6 expression in combination with Staphylococcus aureus muramyl dipeptide (MDP). Heat-killed skin-resident bacteria provoked an IL-6 profile in ILC2 in vitro that was notably impaired in ILC2 derived from patients with nucleotide-binding oligomerization domain-containing protein 2 (NOD2) mutations. In addition, we show that NOD2 signaling can stimulate autophagy in ILC2, which was also impaired in patients with NOD2 mutations. Here, we have identified a role for ILC2 NOD2 signaling in the differential regulation of ILC2-derived IL-6 and have reported a previously unrecognized pathway of direct ILC2 bacterial sensing.


Sign in / Sign up

Export Citation Format

Share Document