Alkylthioacetic acid (3-thia fatty acids) — a new group of non-β-oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver

Author(s):  
Rolf Kristian Berge ◽  
Asle Aarsland ◽  
Harald Kryvi ◽  
Jon Bremer ◽  
Niels Aarsaether
1964 ◽  
Vol 42 (1) ◽  
pp. 139-142 ◽  
Author(s):  
S. J. Patrick ◽  
L. C. Stewart

The effects of hypoglycin A on the metabolism of L-leucine-C14, L-alanine-C14, and L-glutamic-acid-C14 by rat liver slices have been investigated. Hypoglycin exerted markedly inhibitory effects on the conversion of leucine-C14 to fatty acid, cholesterol, and CO2. Conversion of alanine-C14 and glutamic acid-C14 to fatty acids was also inhibited by hypoglycin. No effects of hypoglycin on the conversion of C14-amino acids into protein or glycogen were demonstrated.


1957 ◽  
Vol 35 (1) ◽  
pp. 15-23 ◽  
Author(s):  
J. F. Scaife ◽  
B. B. Migicovsky

The in vitro effect of alloxan and insulin on the synthesis of cholesterol and fatty acids from 1-C14-sodium acetate by rat liver homogenates has been examined. Alloxan caused a reduction in the incorporation of acetate into cholesterol, fatty acids, and C14O2, but an increase in the oxygen consumption and carbon dioxide production. The addition of insulin to homogenates caused a reduction in cholesterol synthesis but an increase in fatty acid synthesis both for normal and diabetic animals. Homogenates from thyrotoxic rats exhibited a marked reduction in cholesterol synthesis when compared with normal animals. C14O2 production by homogenates from starved rats was appreciably lower than for those from normal animals. With this exception no appreciable difference was found in the oxygen uptake, carbon dioxide, or C14O2 production in homogenates from normal, starved, thyroxine-treated, or diabetic animals. Synthesized cholesterol was found to be located principally in the particulate matter of the homogenates after they had been incubated with 1-C14-sodium acetate. Homogenates from starved rats showed no greater tendency to degrade preformed cholesterol during incubation than did those from normal rats.


Lipids ◽  
1969 ◽  
Vol 4 (1) ◽  
pp. 77-79 ◽  
Author(s):  
Akira Yamamoto ◽  
Masahiro Isozaki ◽  
Takeshi Ishibe ◽  
Mitsuo Nishikawa

1957 ◽  
Vol 35 (1) ◽  
pp. 15-23 ◽  
Author(s):  
J. F. Scaife ◽  
B. B. Migicovsky

The in vitro effect of alloxan and insulin on the synthesis of cholesterol and fatty acids from 1-C14-sodium acetate by rat liver homogenates has been examined. Alloxan caused a reduction in the incorporation of acetate into cholesterol, fatty acids, and C14O2, but an increase in the oxygen consumption and carbon dioxide production. The addition of insulin to homogenates caused a reduction in cholesterol synthesis but an increase in fatty acid synthesis both for normal and diabetic animals. Homogenates from thyrotoxic rats exhibited a marked reduction in cholesterol synthesis when compared with normal animals. C14O2 production by homogenates from starved rats was appreciably lower than for those from normal animals. With this exception no appreciable difference was found in the oxygen uptake, carbon dioxide, or C14O2 production in homogenates from normal, starved, thyroxine-treated, or diabetic animals. Synthesized cholesterol was found to be located principally in the particulate matter of the homogenates after they had been incubated with 1-C14-sodium acetate. Homogenates from starved rats showed no greater tendency to degrade preformed cholesterol during incubation than did those from normal rats.


Sign in / Sign up

Export Citation Format

Share Document