S20.9. Rheological properties of biopolymer solutions; sodium hyaluronate, sodium alginate, xanthan and gellan

Biorheology ◽  
1995 ◽  
Vol 32 (2-3) ◽  
pp. 183-183 ◽  
Author(s):  
R CLARK
Author(s):  
Katarzyna Małolepsza-Jarmołowska ◽  

An important issue in the treatment of vaginitis is the amount of time the drug remains on the vaginal mucosa. If the contact time is too short, the drug cannot work effectively to ensure the correct pH in the vaginal environment. This study evaluated formulations of globules containing sodium alginate, lactic acid and chitosan with different pH and rheological properties. The experimental studies revealed that it is possible to produce a preparation with optimal pharmaceutical and application properties. The use of an appropriate ratio of lactic acid to chitosan in the complex and the appropriate concentration of sodium alginate produces a preparation with excellent properties to coat the surface of the vaginal mucosa.


2015 ◽  
Vol 130 ◽  
pp. 49-56 ◽  
Author(s):  
Qian Xiao ◽  
Qunyi Tong ◽  
Yujia Zhou ◽  
Fangming Deng

2015 ◽  
Vol 15 (2) ◽  
pp. 123-126
Author(s):  
Magdalena Brzezińska ◽  
Grzegorz Szparaga

Abstract The aim of the study was to determine the rheological properties of solutions of two types of sodium alginate in water. Rheological studies were carried out to determine the rheological properties of the spinning solutions. Polymer solutions of different concentrations were obtained. Based on the preliminary research of the concentrations of solutions, the proper n and k parameters were selected in order to obtain fibre by wet spinning from solution method. For selected concentrations of polymer solutions, the calcium alginate fibres were obtained.


Langmuir ◽  
1999 ◽  
Vol 15 (12) ◽  
pp. 4217-4221 ◽  
Author(s):  
Kazuhiro Fukada ◽  
Emi Suzuki ◽  
Tsutomu Seimiya

2012 ◽  
Vol 430-432 ◽  
pp. 301-305
Author(s):  
Li Wen Tan ◽  
Dong Mei Xu ◽  
Quan Ji ◽  
Bing Bing Wang ◽  
Yan Zhi Xia

Rheological properties of blend spinning solution of sodium alginate and TiO2 nanoparticles (SA/nano-TiO2) were investigated. The rheological parameters, structural viscosity index (Δη) and flow activation energy (Eη) of spinning solutions were calculated. The results reported that the blend spinning solutions were non-newtonian fluids. The apparent viscosity, consistency index (k) and Eη increased with increasing nano-TiO2 content in SA spinning solution, but the degradation degree of apparent viscosity decreased, flow behavior index (n) only slightly decreased and the Δη had no significantly change. The apparent viscosity (ηa) of spinning solutions could be regulated by changing temperature under 50oC. Blend spinning solution had good stability and practical applicability.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 520
Author(s):  
Masanori Mori ◽  
Rintaro Asahi ◽  
Yoshihiro Yamamoto ◽  
Takanobu Mashiko ◽  
Kayo Yoshizumi ◽  
...  

Filler injection demand is increasing worldwide, but no ideal filler with safety and longevity currently exists. Sodium alginate (SA) is the sodium salt of alginic acid, which is a polymeric polysaccharide obtained by linear polymerization of two types of uronic acid, d-mannuronic acid (M) and l-guluronic acid (G). This study aimed to evaluate the therapeutic value of SA. Nine SA types with different M/G ratios and viscosities were tested and compared with a commercially available sodium hyaluronate (SH) filler. Three injection modes (onto the periosteum, intradermally, or subcutaneously) were used in six rats for each substance, and the animals were sacrificed at 4 or 24 weeks. Changes in the diameter and volume were measured macroscopically and by computed tomography, and histopathological evaluations were performed. SA with a low M/G ratio generally maintained skin uplift. The bulge gradually decreased over time but slightly increased at 4 weeks in some samples. No capsule formation was observed around SA. However, granulomatous reactions, including macrophage recruitment, were observed 4 weeks after SA implantation, although fewer macrophages and granulomatous reactions were observed at 24 weeks. The long-term volumizing effects and degree of granulomatous reactions differed depending on the M/G ratio and viscosity. By contrast, SH showed capsule formation but with minimal granulomatous reactions. The beneficial and adverse effects of SA as a filler differed according to the viscosity or M/G ratio, suggesting a better long-term volumizing effect than SH with relatively low immunogenicity


2009 ◽  
Vol 23 (7) ◽  
pp. 1746-1755 ◽  
Author(s):  
Takahiro Funami ◽  
Yapeng Fang ◽  
Sakie Noda ◽  
Sayaka Ishihara ◽  
Makoto Nakauma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document