Electron microscopic observations of the granule cells (Calleja's island) in the olfactory tubercle of rats

1973 ◽  
Vol 54 ◽  
pp. 330-334 ◽  
Author(s):  
Yasuhiko Hosoya
Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2385-2395 ◽  
Author(s):  
K. Herrup ◽  
J.C. Busser

Unexpected nerve cell death has been reported in several experimental situations where neurons have been forced to re-enter the cell cycle after leaving the ventricular zone and entering the G0, non-mitotic stage. To determine whether an association between cell death and unscheduled cell cycling might be found in conjunction with any naturally occurring developmental events, we have examined target-related cell death in two neuronal populations, the granule cells of the cerebellar cortex and the neurons of the inferior olive. Both of these cell populations have a demonstrated developmental dependency on their synaptic target, the cerebellar Purkinje cell. Two mouse neurological mutants, staggerer (sg/sg) and lurcher (+/Lc), are characterized by intrinsic Purkinje cell deficiencies and, in both mutants, substantial numbers of cerebellar granule cells and inferior olive neurons die due to the absence of trophic support from their main postsynaptic target. We report here that the levels of three independent cell cycle markers--cyclin D, proliferating cell nuclear antigen and bromodeoxyuridine incorporation--are elevated in the granule cells before they die. Although lurcher Purkinje cells die during a similar developmental period, no compelling evidence for any cell cycle involvement in this instance of pre-programmed cell death could be found. While application of the TUNEL technique (in situ terminal transferase end-labeling of fragmented DNA) failed to label dying granule cells in either mutant, light and electron microscopic observations are consistent with the interpretation that the death of these cells is apoptotic in nature. Together, the data indicate that target-related cell death in the developing central nervous system is associated with a mechanism of cell death that involves an apparent loss of cell cycle control.


1983 ◽  
Vol 215 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Neil R. Krieger ◽  
John R. Megill ◽  
Peter Sterling

1970 ◽  
Vol 7 (1) ◽  
pp. 157-187
Author(s):  
J. L. PRICE ◽  
T. P. S. POWELL

An experimental investigation has been made of the site and mode of termination of the 3 groups of afferent fibres to the olfactory bulb which come from more caudal parts of the cerebral hemisphere. Lesions have been placed in the relevant parts of the brain of the rat and the resulting degeneration of axon terminals in the olfactory bulb studied with the electron microscope. All 3 groups of these extrinsic afferent fibres end in asymmetrical synapses upon the granule cells, and they have a differential termination upon its various processes. The possibility that these fibres also end upon other cells in the bulb (particularly the short-axon and periglomerular cells) cannot be excluded. The centrifugal fibres end upon gemmules in the deep half of the external plexiform layer only; no degenerating terminals were found in relation to the glomeruli although degenerating centrifugal axons are present here. The fibres of the anterior commissure terminate upon spines and varicosities of the deep dendrites and upon somatic spines of the granule cells. After lesions of the anterior olfactory nucleus, degenerating terminals were found in the ipsilateral olfactory bulb, which could not be ascribed to the centrifugal fibres or to the fibres of the anterior commissure, as they ended upon the spines of peripheral processes in the granule cell layer, and upon gemmules in the superficial as well as in the deep half of the external plexiform layer. It is proposed that these terminals are those of the axon collaterals from the ipsilateral anterior olfactory nucleus. The axons which form symmetrical synapses, and many which form asymmetrical synapses, do not degenerate even after a lesion immediately behind the olfactory bulb, and are therefore intrinsic to the bulb. It is suggested that the axons which are associated with symmetrical synapses are those of the short-axon cells, and the asymmetrical synapses are formed by the axon collaterals of the mitral and tufted cells.


1989 ◽  
Vol 109 (6) ◽  
pp. 3039-3052 ◽  
Author(s):  
G A Oyler ◽  
G A Higgins ◽  
R A Hart ◽  
E Battenberg ◽  
M Billingsley ◽  
...  

cDNA clones of a neuronal-specific mRNA encoding a novel 25-kD synaptosomal protein, SNAP-25, that is widely, but differentially expressed by diverse neuronal subpopulations of the mammalian nervous system have been isolated and characterized. The sequence of the SNAP-25 cDNA revealed a single open reading frame that encodes a primary translation product of 206 amino acids. Antisera elicited against a 12-amino acid peptide, corresponding to the carboxy-terminal residues of the predicted polypeptide sequence, recognized a single 25-kD protein that is associated with synaptosomal fractions of hippocampal preparations. The SNAP-25 polypeptide remains associated with synaptosomal membrane components after hypoosmotic lysis and is released by nonionic detergent but not high salt extraction. Although the SNAP-25 polypeptide lacks a hydrophobic stretch of residues compatible with a transmembrane region, the amino terminus may form an amphiphilic helix that may facilitate alignment with membranes. The predicted amino acid sequence also includes a cluster of four closely spaced cysteine residues, similar to the metal binding domains of some metalloproteins, suggesting that the SNAP-25 polypeptide may have the potential to coordinately bind metal ions. Consistent with the protein fractionation, light and electron microscopic immunocytochemistry indicated that SNAP-25 is located within the presynaptic terminals of hippocampal mossy fibers and the inner molecular layer of the dentate gyrus. The mRNA was found to be enriched within neurons of the neocortex, hippocampus, piriform cortex, anterior thalamic nuclei, pontine nuclei, and granule cells of the cerebellum. The distribution of the SNAP-25 mRNA and the association of the protein with presynaptic elements suggest that SNAP-25 may play an important role in the synaptic function of specific neuronal systems.


Sign in / Sign up

Export Citation Format

Share Document