Granule cells in the rat olfactory tubercle accumulate3H-γ-aminobutyric acid

1983 ◽  
Vol 215 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Neil R. Krieger ◽  
John R. Megill ◽  
Peter Sterling
1988 ◽  
Vol 66 (5) ◽  
pp. 637-642 ◽  
Author(s):  
Timothy J. Blaxter ◽  
Peter L. Carlen

The dendrites of granule cells in hippocampal slices responded to γ-aminobutyric acid (GABA) with a depolarization. The response was blocked by picrotoxin in a noncompetitive manner. Reductions in the extracellular chloride ion concentration changed the reversal potential of the response by an amount predicted from the Nernst equation for chloride ion. Chloride-dependent hyperpolarizing responses were sometimes also found in the cell body of the granule cells. Since the reversal potential followed that predicted from the Nernst equation for chloride, we conclude that the response was mediated by chloride ions alone with no contribution from other ions. This has not previously been shown for the depolarizing response to GABA in central neurons.


2015 ◽  
Vol 12 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Dongliang Ma ◽  
Su-In Yoon ◽  
Chih-Hao Yang ◽  
Guillaume Marcy ◽  
Na Zhao ◽  
...  

Abstract Rett syndrome is a neurodevelopmental disorder that usually arises from mutations or deletions in methyl-CpG binding protein 2 (MeCP2), a transcriptional regulator that affects neuronal development and maturation without causing cell loss. Here, we show that silencing of MeCP2 decreased neurite arborization and synaptogenesis in cultured hippocampal neurons from rat fetal brains. These structural defects were associated with alterations in synaptic transmission and neural network activity. Similar retardation of dendritic growth was also observed in MeCP2-deficient newborn granule cells in the dentate gyrus of adult mouse brains in vivo, demonstrating direct and cell-autonomous effects on individual neurons. These defects, caused by MeCP2 deficiency, were reversed by treatment with the US Food and Drug Administration-approved drug, pentobarbital, in vitro and in vivo, possibly caused by modulation of γ-aminobutyric acid signaling. The results indicate that drugs modulating γ-aminobutyric acid signaling are potential therapeutics for Rett syndrome.


Sign in / Sign up

Export Citation Format

Share Document