Differential effect of enucleation on two populations of layer V pyramidal cells

1975 ◽  
Vol 88 (3) ◽  
pp. 554-559 ◽  
Author(s):  
Rebecca Ryugo ◽  
David K. Ryugo ◽  
Herbert P. Killackey
2005 ◽  
Vol 94 (5) ◽  
pp. 3357-3367 ◽  
Author(s):  
Elodie Christophe ◽  
Nathalie Doerflinger ◽  
Daniel J. Lavery ◽  
Zoltán Molnár ◽  
Serge Charpak ◽  
...  

Previous studies have shown that layer V pyramidal neurons projecting either to subcortical structures or the contralateral cortex undergo different morphological and electrophysiological patterns of development during the first three postnatal weeks. To isolate the determinants of this differential maturation, we analyzed the gene expression and intrinsic membrane properties of layer V pyramidal neurons projecting either to the superior colliculus (SC cells) or the contralateral cortex (CC cells) by combining whole cell recordings and single-cell RT-PCR in acute slices prepared from postnatal day (P) 5–7 or P21–30 old mice. Among the 24 genes tested, the calcium channel subunits α1B and α1C, the protease Nexin 1, and the calcium-binding protein calbindin were differentially expressed in adult SC and CC cells and the potassium channel subunit Kv4.3 was expressed preferentially in CC cells at both stages of development. Intrinsic membrane properties, including input resistance, amplitude of the hyperpolarization-activated current, and action potential threshold, differed quantitatively between the two populations as early as from the first postnatal week and persisted throughout adulthood. However, the two cell types had similar regular action potential firing behaviors at all developmental stages. Surprisingly, when we increased the duration of anesthesia with ketamine–xylazine or pentobarbital before decapitation, a proportion of mature SC cells, but not CC cells, fired bursts of action potentials. Together these results indicate that the two populations of layer V pyramidal neurons already start to differ during the first postnatal week and exhibit different firing capabilities after anesthesia.


1995 ◽  
Vol 15 (2) ◽  
pp. 216-226 ◽  
Author(s):  
Yoichi Kondo ◽  
Norio Ogawa ◽  
Masato Asanuma ◽  
Zensuke Ota ◽  
Akitane Mori

With use of iron histochemistry and immuno-histochemistry, regional changes in the appearance of iron, ferritin, transferrin, glial fibrillary acidic protein–positive astrocytes, and activated microglia were examined from 1 to 24 weeks after transient forebrain ischemia (four-vessel occlusion model) in rat brain. Expression of the C3bi receptor and the major histocompatibility complex class II antigen was used to identify microglia. Neuronal death was confirmed by hematoxylin–eosin staining only in pyramidal cells of the hippocampal CA, region, which is known as the area most vulnerable to ischemia. Perls' reaction with 3,3′-diaminobenzidine intensification revealed iron deposits in the CA, region after week 4, which gradually increased and formed clusters by week 24. Iron also deposited in layers III-V of the parietal cortex after week 8 and gradually built up as granular deposits in the cytoplasm of pyramidal cells in frontocortical layer V. An increasing astroglial reaction and the appearance of ferritin-immunopositive microglia paralleled the iron accumulation in the hippocampal CA, region, indicating that iron deposition was probably produced in the process of gliosis. Neither neuronal death nor atrophy was found in the cerebral cortex. Nevertheless, an astroglial and ferritin-immunopositive microglial reaction became evident at week 8 in the parietal cortex. On the other hand, the granular iron deposition in the pyramidal neurons of frontocortical layer V was not accompanied by any glial reaction in the chronic stage of ischemia. Three different types of iron deposition in the chronic phase after transient forebrain ischemia were shown in this study. In view of the neuronal damage caused by iron-catalyzed free radical formation, the late-onset iron deposition may be relevant to the pathogenesis of the chronic brain dysfunction seen at a late stage after cerebral ischemia.


1993 ◽  
Vol 187 (6) ◽  
pp. 515-522 ◽  
Author(s):  
Gottfried Schlaug ◽  
Este Armstrong ◽  
Axel Schleicher ◽  
Karl Zilles

Sign in / Sign up

Export Citation Format

Share Document