Thyrotropin-releasing hormone enhances excitatory postsynaptic potentials in neocortical neurons of the rat in vitro

1994 ◽  
Vol 656 (2) ◽  
pp. 229-235 ◽  
Author(s):  
S. Kasparov ◽  
H. Pawelzik ◽  
W. Zieglgänsberger
1991 ◽  
Vol 65 (2) ◽  
pp. 371-382 ◽  
Author(s):  
R. A. Deisz ◽  
G. Fortin ◽  
W. Zieglgansberger

1. The properties of excitatory postsynaptic potentials (EPSPs) of rat neocortical neurons were investigated with a fast single-electrode current-voltage clamp in vitro. Typically, apparently pure EPSPs were obtained by selection of electric stimuli of low intensity. 2. The amplitude and time integral of the EPSP increased when the neuron was depolarized. At threshold for generation of action potentials, the amplitude of EPSPs was increased by approximately 30% [from 5.0 +/- 2.1 to 6.3 +/- 1.0 (SD) mV, n = 12]. The integral of EPSPs was maximally about fourfold (3.7 +/- 1.5, n = 16) larger than at resting membrane potential (Em). The mechanisms involved in this augmentation of EPSPs were further investigated. 3. The amplitude and the time integral of excitatory postsynaptic currents (EPSCs) decreased linearly with shifts in command potential from -100 to -60 mV. The decrease of the EPSC integral with depolarization indicates that the enhancement of the EPSP may be brought about by recruitment of a voltage-dependent inward current. 4. Evoking EPSPs at various delays after the onset of small depolarizing current pulses (0.3-0.6 nA, 600 ms) revealed that augmentation decays with time. The integral of EPSPs evoked approximately 80 ms after the onset of the current pulse was 3.7 (+/- 1.5, n = 16) times larger than at Em. The integral of EPSPs evoked at 480 ms. however, were only twofold (+/- 0.7, n = 16) larger. Hence EPSPs evoked after a delay of 80 ms were 1.7-fold (+/- 0.4, n = 24) larger than EPSPs evoked after 480 ms. EPSCs were independent of the delay of stimulation at all potentials. 5. Intracellular application of the lidocaine derivative N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX 314) at 100 mM from pipettes rapidly abolished fast action potentials and inward rectification. During comparable depolarizations the increase in EPSP integrals was much smaller in QX 314-treated neurons than in controls. On average, the integral of EPSPs evoked at 70-90 ms was 1.7 times (+/- 1.0) larger than at Em, and the integral of EPSPs evoked with larger delays was close to the value obtained at resting Em (0.9 +/- 0.3, n = 8). The ratio of EPSP integrals early versus late (1.8 +/- 0.5) is comparable to controls, suggesting that QX 314-sensitive currents are unlikely to be involved in the time-dependent enhancement. 6. Mimicking EPSPs by brief depolarizations atop long depolarizations revealed a time- and voltage-dependent enhancement comparable to that of EPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 67 (3) ◽  
pp. 728-737 ◽  
Author(s):  
G. G. Hwa ◽  
M. Avoli

1. Intracellular recording techniques were used to investigate the physiological and pharmacological properties of stimulus-induced excitatory postsynaptic potentials (EPSPs) recorded in regular-spiking cells located in layers II/III of rat sensorimotor cortical slices maintained in vitro. 2. Depending on the strength of the extracellular stimuli, a pure EPSP or an EPSP-inhibitory postsynaptic potential sequence was observed under perfusion with normal medium. The EPSPs displayed short latency of onset [2.4 +/- 0.7 (SD) ms] and were able to follow repetitive stimulation (tested less than or equal to 5 Hz). Variation of the membrane potential (Vm) revealed two types of voltage behavior for the short-latency EPSP. The first type decreased in amplitude with depolarization and increased in amplitude with hyperpolarization. In contrast, the second type behaved anomalously by increasing and decreasing in size after depolarization and hyperpolarization, respectively. 3. Several experimental procedures were carried out to investigate the mechanism underlying the anomalous voltage behavior of the EPSP. Results indicated that this type of Vm dependency could be mimicked by an intrinsic response evoked by a brief pulse of depolarizing current and could be abolished by N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (50 mM). Furthermore, the EPSP was not sensitive to the N-methyl-D-aspartate (NMDA) receptor antagonist 3-((+-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP, 10 microM). Thus the anomalous voltage relationship of the neuronal membrane. 4. The involvement of non-NMDA receptors in excitatory synaptic transmission was investigated with their selective antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 1-10 microM). This drug greatly reduced or completely blocked the EPSP in a dose-dependent manner (1-10 microM). The IC50 for the CNQX effect was approximately 2 microM. In the presence of CNQX (10 microM) and glycine (10 microM), synaptic stimulation failed to elicit firing of action potential. However, a CPP-sensitive EPSP was observed. 5. When synaptic inhibition was reduced by low concentration of bicuculline methiodide (BMI, 1-2 microM), extracellular stimulation revealed late EPSPs (latency to onset: 10-30 ms) that were not discernible in normal medium. Similar to the short-latency EPSP, the Vm dependency displayed by this late EPSP could be modified by inward membrane rectifications. The late EPSP appeared to be polysynaptic in origin because 1) its latency of onset was long and variable and 2) it failed to follow repetitive stimuli delivered at a frequency that did not depress the short-latency EPSP.(ABSTRACT TRUNCATED AT 400 WORDS)


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 349 ◽  
Author(s):  
Katalin Prokai-Tatrai ◽  
Daniel L. De La Cruz ◽  
Vien Nguyen ◽  
Benjamin P. Ross ◽  
Istvan Toth ◽  
...  

Using thyrotropin-releasing hormone (TRH) as a model, we explored whether synergistic combination of lipoamino acid(s) and a linker cleaved by prolyl oligopeptidase (POP) can be used as a promoiety for prodrug design for the preferential brain delivery of the peptide. A representative prodrug based on this design principle was synthesized, and its membrane affinity and in vitro metabolic stability, with or without the presence of a POP inhibitor, were studied. The in vivo formation of TRH from the prodrug construct was probed by utilizing the antidepressant effect of the peptide, as well as its ability to increase acetylcholine (ACh) synthesis and release. We found that the prototype prodrug showed excellent membrane affinity and greatly increased metabolic stability in mouse blood and brain homogenate compared to the parent peptide, yet a POP inhibitor completely prevented prodrug metabolism in brain homogenate. In vivo, administration of the prodrug triggered antidepressant-like effect, and microdialysis sampling showed greatly increased ACh release that was also antagonized upon a POP inhibitor treatment. Altogether, the obtained promising exploratory data warrant further investigations on the utility of the prodrug approach introduced here for brain-enhanced delivery of small peptides with neurotherapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document