electrode current
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Ross Drummond ◽  
Chuan Cheng ◽  
Patrick Grant ◽  
Stephen Duncan

Abstract Graded electrodes for Li-ion batteries aim to exploit controlled variations in local electrode microstructure to improve overall battery performance, including reduced degradation rates and increased capacity at high discharge rates. However, the mechanisms by which grading might deliver performance benefit, and under what conditions, are not yet fully understood. A Li-ion battery electrochemical model (a modified Doyle-Fuller-Newman type model capable of generating impedance functions) is developed in which local microstructural changes are captured in order to understand why and when graded electrodes can offer performance benefits. Model predictions are evaluated against experimental electrochemical impedance data obtained from electrodes with micro-scale, controlled variations in microstructure. A region locally enriched with carbon at the electrode/current collector interface is shown to significantly reduce the overpotential distribution across the thickness of a LiFePO$_4$-based Li-ion battery cathode, resulting in a lower charge transfer resistance and impedance. The insights gained from the LiFePO$_4$-based electrodes are generalised to wider design principles for both uniform and graded Li-ion battery electrodes.


2021 ◽  
Vol 2 (1) ◽  
pp. 70-92
Author(s):  
Reiner L Stenzel ◽  
Johannes Grünwald ◽  
Codrina Ionita ◽  
Roman Schrittwieser ◽  
Manuel Urrutia

The properties of sheaths and associated potential structures and instabilities cover a broad field which even a review cannot cover everything. Thus, the focus will be on about a dozen examples, describe their observations and focus on the basic physical explanations for the effects, while further details are found in the references. Due to familiarity the review focuses mainly on the authors work but compared and referenced related work. The topics start with a high frequency oscillations near the electron plasma frequency. Low frequency instabilities also occur at the ion plasma frequency.The injection of ions into an electron-rich sheath widens the sheath and forms a double layer. Likewise, the injection of electrons into an ion rich sheath widens and establishes a double layer which occurs in free plasma injection into vacuum. The sheath widens and forms a double layer by ionization in an electron rich sheath. When particle fluxes in "fireballs" gets out of balance the double layer performs relaxation instabilities which has been studied extensively. Fireballs inside spherical electrodes create a new instability due to the transit time of trapped electrons. On cylindrical and spherical electrodes the electron rich sheath rotates in magnetized plasmas. Electrons rotate due to $\mathbf E \times \mathbf B_0$ which excites electron drift waves with azimuthal eigenmodes. Conversely a permanent magnetic dipole has been used as a negative electrode. The impact of energetic ions produces secondary electron emission, forming a ring of plasma around the magnetic equator. Such "magnetrons" are subject to various instabilities. Finally, the current to a positively biased electrode in a uniformly magnetized plasma is unstable to relaxation oscillations, which shows an example of global effects. The sheath at the electrode raises the potential in the flux tube of the electrode thereby creating a radial sheath which moves unmagnetized ions radially. The ion motion creates a density perturbation which affects the electrode current. If the electrode draws large currents the current disruptions create large inductive voltages on the electrode, which again produce double layers. This phenomenon has been seen in reconnection currents. Many examples of sheath properties will be explained. Although the focus is on the physics some examples of applications will be suggested such as neutral gas heating and accelerating, sputtering of plasma magnetrons and rf oscillators.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Juan M. Cornejo ◽  
Agar K. Quintana ◽  
Nohra E. Beltran ◽  
Pilar Granados

Abstract Background An electrical potential not previously reported—electrical cochlear response (ECR)—observed only in implanted patients is described. Its amplitude and growth slope are a measurement of the stimulation achieved by a tone pip on the auditory nerve. The stimulation and recording system constructed for this purpose, the features of this potential obtained in a group of 43 children, and its possible clinical use are described. The ECR is obtained by averaging the EEG epochs acquired each time the cochlear implant (CI) processes a tone pip of known frequency and intensity when the patient is sleeping and using the CI in everyday mode. The ECR is sensitive to tone pip intensity level, microphone sensitivity, sound processor gain, dynamic range of electrical current, and responsiveness to electrical current of the auditory nerve portion involved with the electrode under test. It allows individual evaluation of intracochlear electrodes by choosing, one at the time, the central frequency of the electrode as the test tone pip frequency, so the ECR measurement due to a variable intensity tone pip allows to establish the suitability of the dynamic range of the electrode current. Results There is a difference in ECR measurements when patients are grouped based on their auditory behavior. The ECR slope and amplitude for the Sensitive group is 0.2 μV/dBHL and 10 μV at 50 dBHL compared with 0.04 μV/dBHL and 3 μV at 50dBHL for the Inconsistent group. The clinical cases show that adjusting the dynamic range of current based on the ECR improved the patient’s auditory behavior. Conclusions ECR can be recorded regardless of the artifact due to the electromyographic activity of the patient and the functioning of the CI. Its amplitude and growth slope versus the intensity of the stimulus differs between electrodes. The relationship between minimum ECR detection intensity level and auditory threshold suggests the possibility of estimating patient auditory thresholds this way. ECR does not depend on the subject’s age, cooperation, or health status. It can be obtained at any time after implant surgery and the test procedure is the same regardless of device manufacturer.


Author(s):  
Harshavardhana Natarajan ◽  
Sundar Singh Sivam Sundarlingam Paramasivam ◽  
Durai Kumaran ◽  
G. Balakumaran ◽  
R. Naveen

Deformation and deterioration of the electrode caused by chemical reaction is resistant to AISI 1020 with caps screw electrodes. In this study, squeeze, weld, hold time, current and pressure is evaluated for the nugget diameter. OP1is the surface waviness, OP2 is the force, OP3 is the nugget height and OP4 is welded by spot welding on steel plates. AISI 1020 steel plates with thicknesses of 0.8 mm and 1.5mm for connecting the cap screw electrode, current and clock sensor with current control for 120 kVA capacitors are connected. The cycle welding currents of 5, 10, 15, 20 and 25 were selected and increased from 8 kA to 10 kA is done during the welding process. In this study, OP1 to OP4 are selected and the verification experiment is performed in an optimal state to observe the development accuracy. Based on confirmation of test results, it was determined to develop a model that can be effectively used to predict the size of weld surface thereby improving the quality of the weld and calculating the cost of the top screw head. The welded joints of two electrodes are exposed to weld radius. The groove, force and valve height are calculated by the ingot detector, dynamometer and ultrasonic. This allows the workstation to be welded to the desired contour while reducing its production costs.


Author(s):  
Yongli Liao ◽  
Ruihai Li ◽  
Xiaobo Meng ◽  
Bo Zhang ◽  
Rong Zeng ◽  
...  

2020 ◽  
Vol 41 (18-19) ◽  
pp. 1568-1575
Author(s):  
Lenard Hanf ◽  
Marcel Diehl ◽  
Lea‐Sophie Kemper ◽  
Martin Winter ◽  
Sascha Nowak

2020 ◽  
Vol 319 (1) ◽  
pp. C218-C232 ◽  
Author(s):  
Daniel R. Miranda ◽  
Eric Reed ◽  
Abdulrahman Jama ◽  
Michael Bottomley ◽  
Hongmei Ren ◽  
...  

Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl− channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.


Sign in / Sign up

Export Citation Format

Share Document