Real-time estimation of the chain length distribution in a polymerization reactor—II. comparison of estimated and measured distribution functions

1986 ◽  
Vol 41 (10) ◽  
pp. 2681-2683 ◽  
Author(s):  
Hans Schuler ◽  
Simira Papadopoulou
1954 ◽  
Vol 27 (3) ◽  
pp. 622-628 ◽  
Author(s):  
W. F. Watson

Abstract Functions for the distribution of chain lengths of a polymer formed during polymerization have been evaluated in terms of the directly measurable rate and rate of initiation, or the single equivalent measurement of number-average chain length. No details of the reaction mechanism are required, except for the occurrence of termination by combination of polymer radicals. This is in contrast to the usual derivation of distribution functions from the postulated kinetic scheme. The three types of termination are considered, (1) combination absent, (2) combination predominant, and (3) a mixture of combination with other modes of termination. The application to copolymerization is outlined. Relationships between the various average molecular weights are considered.


1954 ◽  
Vol 27 (3) ◽  
pp. 629-633
Author(s):  
W. F. Watson

Abstract The distribution of chain lengths of polymers on formation, random degradation and random cross-linking, have been derived by a simple statistical treatment. Chain-length distribution functions for all cases are represented by special forms of the expression : Nx/N=(α+β+γ)exp[−(α+β+γ)x] where β is the reciprocal of the average chain length on polymer formation, α is the degree of random degradation, and γ is the degree of cross-linking.


2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


Sign in / Sign up

Export Citation Format

Share Document