Heat transfer from exothermically reacting fluid in vertical unstirred vessels—I. temperature and flow fields

1987 ◽  
Vol 42 (9) ◽  
pp. 2183-2192 ◽  
Author(s):  
J.R. Bourne ◽  
F. Brogli ◽  
F. Hoch ◽  
W. Regenass
2021 ◽  
Author(s):  
Shenglong Zhu ◽  
Shaorui Qin ◽  
Jianlin Li ◽  
Jia Xie ◽  
Dongbo Song ◽  
...  

Author(s):  
Masoud Darbandi ◽  
Mohammad Reza Ghorbani ◽  
Hamed Darbandi

In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot–wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain sizes and the mesh distributions are carefully chosen to avoid boundary condition error appearances. Following the past researches, we do not take into account the conduction heat transfer passing through hot-wire mounting arms in our simulations. Imposing a fixed temperature condition at the face of hot-wire, we simulate the flow over and the heat transfer from hot-wire and calculate the convection heat transfer coefficient and the local Nusselt number values. To be sure of the accuracy of our CFD code, we simulate a number of similar test cases and compare our numerical solutions with the available numerical solutions and/or experimental data.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
K.-H. Weng ◽  
A. Ahmed

The periodic state of laminar flow and heat transfer due to an insulated or isothermal rotating cylinder object in a square cavity is investigated computationally. A finite-volume-based computational methodology utilizing primitive variables is used. Various rotating objects (circle, square, and equilateral triangle) with different sizes are placed in the middle of a square cavity. A combination of a fixed computational grid and a sliding mesh was utilized for the square and triangle shapes. For the insulated and isothermal objects, the cavity is maintained as differentially heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr=5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta<1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners, and the periodic channeling effect of the traversing vertices are clearly elucidated. The simulations of the dynamic flow fields were confirmed against experimental data obtained by particle image velocimetry. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to the conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasiperiodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated with the rotational Reynolds number and shape of the object. For high Re numbers, the performance of the system is independent of the shape of the object. On the other hand, with lowering of the hydraulic diameter (i.e., bigger objects), the triangle and the circle exhibit the highest and lowest heat transfers, respectively. High intensity of the periodic channeling and not its frequency is identified as the cause of the observed enhancement.


2010 ◽  
Vol 45 (11) ◽  
pp. 1117-1122 ◽  
Author(s):  
M. H. Tavakoli ◽  
E. Mohammadi-Manesh ◽  
S. Omid

Sign in / Sign up

Export Citation Format

Share Document