infrared measurement
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 27)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Jarosław Bednarz

The article presents the infrared measurement techniques for analyzing and monitoring the dynamic state of the structure using advanced thermal imaging techniques. The article present an overview of the infrared measurement techniques and algorithms proposed research design based on the selected infrared measurement techniques. The article presents the results of a series of studies on the possibility of applying the vibrothermography methods in SHM systems. In particular it focuses on the analysis of the possibility of studying the dynamics of the rotor and the detection of its failures during operation. The results of vibrothermography studies of impeller made of plastic are presented. The results of studies based on algorithms developed by the authors. The article also presents the concept of the use of thermal imaging research in fault detection and monitoring of the dynamic state of real objects.


2021 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daiki Shiozawa ◽  
Masaki Uchida ◽  
Yuki Ogawa ◽  
Takahide Sakagami ◽  
Shiro Kubo

Currently, gas leakage source detection is conducted by the human senses and experience. The development of a remote gas leakage source detection system is required. In this research, an infrared camera was used to detect gas leakage. The gas can be detected by the absorption of infrared rays by the gas and the infrared rays emitted from the gas itself. A three-dimensional reconstruction of a leaked gas cloud was performed to identify the gas leakage source and the flow direction of the gas. The so-called four-dimensional reconstruction of the leaked gas cloud, i.e., reconstruction of three-dimensional images of a gas cloud varying with time, was successfully performed by applying the ART (Algebraic Reconstruction Techniques) method to the multiple optical paths of infrared measurement.


2021 ◽  
Vol 13 (19) ◽  
pp. 3885
Author(s):  
Xinming Zhu ◽  
Xiaoning Song ◽  
Pei Leng ◽  
Xiaotao Li ◽  
Liang Gao ◽  
...  

Land surface temperature (LST) is a crucial biophysical parameter related closely to the land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotemporal resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and spatiotemporal image fusion methods have been widely proposed to solve this problem. However, most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat 8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST product at tp. Results indicated that the proposed framework performed better in characterizing LST texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial impermeable surfaces and bare lands. This means that this framework can provide a set of LST dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas.


2021 ◽  
Author(s):  
Jonathan D. Muller ◽  
Eyal Rotenberg ◽  
Fyodor Tatarinov ◽  
Irina Vishnevetsky ◽  
Tamir Dingjan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4584
Author(s):  
Alex Gander ◽  
Dan Sykes ◽  
Raúl Payri ◽  
Guillaume de Sercey ◽  
Dave Kennaird ◽  
...  

Pre-catalyst engine emissions and detrimental injector deposits have been widely associated with the near-nozzle fluid dynamics during and after the injection events. Although the heating and evaporation of fuel films on the nozzle surface directly affects some of these processes, there are no experimental data for the transient evolution of nozzle surface temperature during typical engine conditions. In order to address this gap in knowledge, we present a non-intrusive approach for the full-cycle time resolved measurement of the surface temperature of production nozzles in an optical engine. A mid-wave infrared high-speed camera was calibrated against controlled conditions, both out of engine and in-engine to account for non-ideal in surface emissivity and optical transmissivity. A custom-modified injector with a thermocouple embedded below the nozzle surface was used to validate the approach under running engine conditions. Calibrated infrared thermography was then applied to characterise the nozzle temperature at 1200 frames per second, during motored and fired engine operation, thus revealing for the first time the effect of transient operating conditions on the temperature of the injector nozzle’s surface.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3950
Author(s):  
Abeer Alassod ◽  
Syed Rashedul Islam ◽  
Mina Shahriari Khalaji ◽  
Rogers Tusiime ◽  
Wanzhen Huang ◽  
...  

Compositing is an interesting strategy that has always been employed to introduce or enhance desired functionalities in material systems. In this paper, sponges containing polypropylene, lignin, and octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) were successfully prepared via an easy and elegant strategy called thermally induced phase separation (TIPS). To fully explore the behaviour of different components of prepared sponges, properties were characterized by a thermogravimetric analyser (TGA), differential scanning calorimetry (DSC), Fourier transform infrared measurement (FTIR), and scanning electron microscopy (SEM). Furthermore, wettability properties toward an organic liquid and oil were investigated. The FTIR analysis confirmed the chemical modification of the components. TGA and DSC measurements revealed thermal stability was much better with an increase in OV-POSS content. OV-POSS modified sponges exhibited ultra-hydrophobicity and high oleophilicity with water contact angles of more than 125°. The SEM revealed that POSS molecules acted as a support for reduced surface roughness. Moreover, OV-POSS-based blend sponges showed higher sorption capacities compared with other blend sponges without OV-POSS. The new blend sponges demonstrated a potential for use as sorbent engineering materials in water remediation.


Sign in / Sign up

Export Citation Format

Share Document