Error trajectory descriptions of nonlinear controller designs

1990 ◽  
Vol 45 (10) ◽  
pp. 3017-3034 ◽  
Author(s):  
P.J. McLellan ◽  
T.J. Harris ◽  
D.W. Bacon
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Nicholas Hawkins ◽  
Bhagyashri Bhagwat ◽  
Michael L. McIntyre

In this paper, a nonlinear controller is proposed to manage the rotational speed of a full-variable Squirrel Cage Induction Generator wind turbine. This control scheme improves upon tractional vector controllers by removing the need for a rotor flux observer. Additionally, the proposed controller manages the performance through turbulent wind conditions by accounting for unmeasurable wind torque dynamics. This model-based approach utilizes a current-based control in place of traditional voltage-mode control and is validated using a Lyapunov-based stability analysis. The proposed scheme is compared to a linear vector controller through simulation results. These results demonstrate that the proposed controller is far more robust to wind turbulence than traditional control schemes.


Author(s):  
Byron Hernandez ◽  
Michael Felipe Cifuentes Molano ◽  
Eduardo Giraldo
Keyword(s):  

1996 ◽  
Vol 118 (3) ◽  
pp. 615-619 ◽  
Author(s):  
B. C. Fabien

This paper develops a stabilizing observer-based feedback linearizing controller for a single-axis electromagnetic suspension. The controller uses only the measured output of the system, and is shown to be robust with respect to parameter uncertainty. The controller differs from other robust feedback linearizing controllers that have appeared in recent literature, because it is continuous, and non-adaptive. Lyapunov’s second method is used to prove stability and robustness of the controller. The controller has a simple structure and its gains are determined by solving two weakly coupled Riccati equations. Numerical simulations are performed to compare a linear feedback controller and the observer-based feedback linearizing controller. Results obtained demonstrate that the nonlinear controller yields superior performance when compared with the linear feedback controller. The controller synthesis technique developed in this paper is applicable to other fully feedback linearizable systems, not just electromagnetic suspensions.


2021 ◽  
Author(s):  
Youssef El Haj ◽  
Ahmed Sheir ◽  
Ruth Milman ◽  
Vijay K. Sood

2021 ◽  
Vol 158 (A3) ◽  
Author(s):  
X K Zhang ◽  
G Q Zhang

In order to solve the problem that backstepping method cannot effectively guarantee the robust performance of the closed-loop system, a novel method of determining parameter is developed in this note. Based on the ship manoeuvring empirical knowledge and the closed-loop shaping theory, the derived parameters belong to a reduced robust group in the original stabilizing set. The uniformly asymptotic stability is achieved theoretically. The training vessel “Yulong” and the tanker “Daqing232” are selected as the plants in the simulation experiment. And the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document