Fluid temperature fluctuations accompanying turbulent heat transfer in a pipe

1963 ◽  
Vol 18 (5) ◽  
pp. 307-311 ◽  
Author(s):  
S. Tanimoto ◽  
T.J. Hanratty
2001 ◽  
Vol 123 (5) ◽  
pp. 849-857 ◽  
Author(s):  
Iztok Tiselj ◽  
Robert Bergant ◽  
Borut Mavko ◽  
Ivan Bajsic´ ◽  
Gad Hetsroni

The Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in the two-dimensional turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed at constant friction Reynolds number 150 and Prandtl numbers between 0.71 and 7 considering the fluid temperature as a passive scalar. The obtained statistical quantities like root-mean-square temperature fluctuations and turbulent heat fluxes were verified with existing DNS studies obtained with ideal thermal boundary conditions. Results of the present study were compared to the findings of Polyakov (1974), who made a similar study with linearization of the fluid equations in the viscous sublayer that allowed analytical approach and results of Kasagi et al. (1989), who performed similar calculation with deterministic near-wall turbulence model and numerical approach. The present DNS results pointed to the main weakness of the previous studies, which underestimated the values of the wall temperature fluctuations for the limiting cases of the ideal-isoflux boundary conditions. With the results of the present DNS it can be decided, which behavior has to be expected in a real fluid-solid system and which one of the limiting boundary conditions is valid for calculation, or whether more expensive conjugate heat transfer calculation is required.


1997 ◽  
Vol 119 (1) ◽  
pp. 46-52 ◽  
Author(s):  
S. Mazumder ◽  
M. F. Modest

The modeling of near-wall turbulent heat transfer necessitates appropriate description of near-wall effects, namely, molecular transport, production of turbulence by inhomogeneities, and dissipation of the temperature fluctuations by viscosity. A stochastic Lagrangian model, based on the velocity-composition joint probability density function (PDF) method, has been proposed. The proposed model, when compared with experimental and direct numerical simulation (DNS) data, overdamps the dissipation of the temperature fluctuations in the inertial sublayer, but reaches the correct limit at the wall. The performance of the model has also been compared to the standard k-ε and the algebraic Reynolds stress model (ARSM) for both constant heat flux and constant temperature boundary conditions at large Reynolds numbers. The Lagrangian nature of the model helps eliminate numerical diffusion completely.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

In the present investigation, turbulent heat transfer in fully developed curved-pipe flow has been studied by using large eddy simulation (LES). We consider a fully developed turbulent curved-pipe flow with axially uniform wall heat flux. The friction Reynolds number under consideration is Reτ  = 1000 based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. To investigate the effects of wall curvature on turbulent flow and heat transfer, we varied the nondimensionalized curvature (δ) from 0.01 to 0.1. Dynamic subgrid-scale models for turbulent subgrid-scale stresses and heat fluxes were employed to close the governing equations. To elucidate the secondary flow structures due to the pipe curvature and their effect on the heat transfer, the mean quantities and various turbulence statistics of the flow and temperature fields are presented, and compared with those of the straight-pipe flow. The friction factor and the mean Nusselt number computed in the present study are in good agreement with the experimental results currently available in the literature. We also present turbulence intensities, skewness and flatness factors of temperature fluctuations, and cross-correlations of velocity and temperature fluctuations. In addition, we report the results of an octant analysis to clarify the correlation between near-wall turbulence structures and temperature fluctuation in the vicinity of the pipe wall. Based on our results, we attempt to clarify the effects of the pipe curvature on turbulent heat transfer. Our LES provides researchers and engineers with useful data to understand the heat-transfer mechanisms in turbulent curved-pipe flow, which has numerous applications in engineering.


Author(s):  
Majid Molki

Turbulent heat transfer for flow of water-air mixture driven by moving walls in a cubical heat sink is investigated. One wall is maintained at an elevated temperature, while the vertical walls are at a low temperature. The cubical enclosure functions as a heat sink using water-air mixture with no phase change. Different arrangements for wall motion are considered, which include 1 to 4 moving walls. As the number of moving walls increases, the flow and heat transfer become more complex. In general, the flow reveals complex and multi-scale structures with an unsteady and evolving nature. The larger structure of the flow is resolved using Large Eddy Simulation, while the sub-grid scales are captured by the dynamic k-equation eddy-viscosity model. The focus of this work is on thermal field and heat transfer as affected by the complex flow field generated by multiple moving walls. The results indicate that the Nusselt number for the heat sink varies from 5202.8 to 7356.1, depending on the number of moving walls. Contours of fluid temperature, liquid volume fraction, local and average values of Nusselt number are among the results presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document