Total characterisation of the excited-state density matrix in laser fluorescence experiments

1984 ◽  
Vol 105 (5) ◽  
pp. 477-479 ◽  
Author(s):  
A.J. Bain ◽  
A.J. McCaffery
Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 739-746
Author(s):  
Andres Mauricio Kowalski ◽  
Angelo Plastino ◽  
Gaspar Gonzalez

In this paper, a reference to the semiclassical model, in which quantum degrees of freedom interact with classical ones, is considered. The classical limit of a maximum-entropy density matrix that describes the temporal evolution of such a system is analyzed. Here, it is analytically shown that, in the classical limit, it is possible to reproduce classical results. An example is classical chaos. This is done by means a pure-state density matrix, a rather unexpected result. It is shown that this is possible only if the quantum part of the system is in a special class of states.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 901 ◽  
Author(s):  
Anton Georgiev ◽  
Liudmil Antonov

Theoretical design of conjugated proton cranes, based on 7-hydroxyquinoline as a tautomeric sub-unit, has been attempted by using ground and excited state density functional theory (DFT) calculations in various environments. The proton crane action request existence of a single enol tautomer in ground state, which under excitation goes to the excited keto tautomer through a series of consecutive excited-state intramolecular proton transfer (ESIPT) steps with the participation of the crane sub-unit. A series of substituted pyridines was used as crane sub-units and the corresponding donor-acceptor interactions were evaluated. The results suggest that the introduction of strong electron donor substituents in the pyridine ring creates optimal conditions for 8-(pyridin-2-yl)quinolin-7-ols to act as proton cranes.


2012 ◽  
Vol 388 (1) ◽  
pp. 012011 ◽  
Author(s):  
Manoj K Harbola ◽  
M Hemanadhan ◽  
Md Shamim ◽  
P Samal

2015 ◽  
Vol 91 (1) ◽  
Author(s):  
P. D. Nation ◽  
J. R. Johansson ◽  
M. P. Blencowe ◽  
A. J. Rimberg

Sign in / Sign up

Export Citation Format

Share Document