Classical trajectory calculations for the D+H2(v=0, j=0−3)→HD(v′, j′)+H reaction: Differential and state-to-state cross sections in the 0.35–1.10 eV collision energy range

1990 ◽  
Vol 169 (3) ◽  
pp. 243-252 ◽  
Author(s):  
F.J. Aoiz ◽  
V. Candela ◽  
V.J. Herrero ◽  
V. Sáez Rábanos
2018 ◽  
Vol 96 (8) ◽  
pp. 926-932 ◽  
Author(s):  
Guan-Qing Ren ◽  
Ai-Ping Fu ◽  
Shu-Ping Yuan ◽  
Tian-Shu Chu

To investigate the dynamics mechanism of the Br + HgBr → Br2 + Hg reaction, the quasi-classical trajectory calculations are performed on Balabanov’s potential energy surface (PES) of ground electronic state. Both the scalar and vector properties are investigated to recognize the dynamics of the title reaction. Reaction probability for the total angular momentum quantum number J = 0 is determined at the collision energies (denoted as Ec) in a range of 1–25 kcal/mol, and the product vibrational distributions are given and compared between Ec = 20 and 40 kcal/mol. Other calculation values characterizing product polarizations including polarization-dependent differential cross sections (PDDCSs), distributions of P(θr), P([Formula: see text]), and P(θr, [Formula: see text]), are all discussed and compared between the two different collision energies in detail to analyze the alignment and orientation characteristics. It is revealed that the products prefer forward scattering and the PDDCSs are anisotropic in the whole range of the scattering angle. The product rotational angular momentum j′ shows a tendency to align perpendicular to the reagent relative velocity k. In fact, the product polarization of the title reaction is weak at both collision energies. In terms of horizontal comparison, the alignment is slightly stronger but the orientation is even less remarkable at higher collision energy.


Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1687-1690 ◽  
Author(s):  
Justin Jankunas ◽  
Richard N. Zare ◽  
Foudhil Bouakline ◽  
Stuart C. Althorpe ◽  
Diego Herráez-Aguilar ◽  
...  

When a hydrogen (H) atom approaches a deuterium (D2) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D2 → HD(v′ = 4, j′) + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j′ HD products to become backward scattered.


2014 ◽  
Vol 13 (01) ◽  
pp. 1450002
Author(s):  
Ruifeng Lu ◽  
Zhenyu Xu ◽  
Yunhui Wang

The quasi-classical trajectory method has been employed to investigate the initial vibrational and rotational effects of the title reaction on an improved ab initio potential energy surface for the 11A′ state. Meanwhile, isotopic effect has also been studied at collision energy of 19 kcal/mol. The product rotational alignment factor 〈P2(j′ • k)〉, angular distributions of P(ϕr), P(θr) and the generalized polarization dependent differential cross-sections have been calculated. The- results show that the reagent vibrational excitation generally strengthens the product alignment perpendicular to the reagent relative velocity vector k and affects the product scattering preference, and the rotational excitation has the same trend from j = 0 to 2 except for the higher excitation of j = 3. Further, the substitution of atom H with D leads to a stronger product alignment while changes some stereodynamical properties subtly.


2013 ◽  
Vol 12 (01) ◽  
pp. 1250093 ◽  
Author(s):  
YULIANG WANG ◽  
JINCHUN ZHANG ◽  
BAOGUO TIAN ◽  
KUN WANG ◽  
XIAORUI LIANG ◽  
...  

Based on the new accurate potential energy surface of the ground state of LiH2 system. Quasi-classical trajectory (QCT) calculations were carried out for the reaction LiH + H . The reaction probability of the title reaction for J = 0 has been calculated. The reaction cross sections were calculated as functions of the collision energy in the range 0.1–2.5 eV. The results were found to be well consistent with the previous real wave packet (RWP) and QCT results.


Sign in / Sign up

Export Citation Format

Share Document