High-pressure infrared spectroscopic evidence of water binding sites in 1,2-diacyl phospholipids

1988 ◽  
Vol 46 (3) ◽  
pp. 213-224 ◽  
Author(s):  
P.T.T. Wong ◽  
H.H. Mantsch
2021 ◽  
Vol 1 (7) ◽  
pp. 305-305
Author(s):  
Jana Weiß ◽  
Christine Rautenberg ◽  
Thomas Rall ◽  
Christoph Kubis ◽  
Evgenii Kondratenko ◽  
...  

2021 ◽  
Vol 1 (7) ◽  
pp. 308-314
Author(s):  
Jana Weiß ◽  
Christine Rautenberg ◽  
Thomas Rall ◽  
Christoph Kubis ◽  
Evgenii Kondratenko ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianbin Su ◽  
Xin-Di Zhu ◽  
Yong Wang ◽  
Dong Li ◽  
Li-Jun Wang

Abstract Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.


2016 ◽  
Vol 101 (3) ◽  
pp. 706-712 ◽  
Author(s):  
Elizabeth C. Thompson ◽  
Andrew J. Campbell ◽  
Zhenxian Liu

2003 ◽  
Vol 83 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Mart�n Buffa ◽  
Buenaventura Guamis ◽  
Jordi Saldo ◽  
Antonio J. Trujillo

Sign in / Sign up

Export Citation Format

Share Document