carreau model
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Mohammed Ghalib Al-Azawy

This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.


2021 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Mohammed G. Al-Azawy

AbstractThis article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD) to offer guidance to the community, especially surgeons, and help them to avoid the risk of stenosis. Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model (arrive to 0.54 J/kg) than with the Newtonian flow (arrive to o.47 J/kg) at the upstream and through the first stenosis.


Author(s):  
Mohsan Hassan ◽  
Abrar Faisal ◽  
Khurram Javid ◽  
Salah Ud-Din Khan ◽  
Ashfaq Ahmad ◽  
...  

Background: Non-Newtonian fluids, especially shear thinning fluids, have several applications in the polymer industry, food industry, and even in everyday life. The viscosity of shear thinning fluids is sometimes decreased by two or three orders of magnitude due to the alignment of the molecules in order when the shear rate is increased, and it cannot be ignored in the case of polymer processing and lubrication problems. Objective: So, the effects of viscosities at a low and high shear rate on the heat and mass boundary layer flow of shear thinning fluid over moving belts is investigated in this study. For this proposed, the generalized Carreau model of viscosity relates to shear rate and is used in the momentum equation. The Carreau model contains the five parameters: low shear rate viscosity, high shear rate viscosity, viscosity curvature, consistency index, and flow behavior index. For the heat flow, expression of the thermal conductivity model, similar to the viscosity equation due to the non-Newtonian nature of the fluid, is used in the energy equation. Methods: On the mathematical model of the problem, boundary layer approximations are applied and then simplified by applying the similarity transformations to get the solution. The solution of the simplified equations is obtained by numerical technique RK-Shooting Method. The results are compared with existing results for limited cases and good agreement is found. Results : The results are obtained in the form of velocity and temperature profiles under the impact of all the viscosity’s parameters and are displayed in graphical form. Moreover, the boundary layer parameters such as the thickness of the regions, momentum thickness, and displacement thickness are calculated to understand the structure of the boundary layer flow of fluid. Conclusion: The velocity and temperature of the fluid are decreased and increased respectively by all viscosity’s parameters of the model. So, the results of the boundary layer fluid flow under rheological parameters will not only help engineers to design superior chemical equipment, but will also help improve the economy and efficiency of the overall process.


Author(s):  
Martin Dugstad ◽  
Kundan Kumar ◽  
Øystein Pettersen

AbstractDimensional reduction strategy is an effective approach to derive reliable conceptual models to describe flow in fractured porous media. The fracture aperture is several orders of magnitude smaller than the characteristic size (e.g., the length of the fracture) of the physical problem. We identify the aperture to length ratio as the small parameter 𝜖 with the fracture permeability scaled as an exponent of 𝜖. We consider a non-Newtonian fluid described by the Carreau model type where the viscosity is dependent on the fluid velocity. Using formal asymptotic approach, we derive a catalogue of reduced models at the vanishing limit of 𝜖. Our derivation provides new models in a hybrid-dimensional setting as well as models which exhibit two-scale behaviour. Several numerical examples confirm the theoretical derivations of the upscaled models. Moreover, we have also studied the sensitivity of the upscaled models when a particular upscaled model is used beyond its range of validity to provide additional insight.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 742-753
Author(s):  
Guo Li ◽  
Mitao Zhang ◽  
Huajian Ji ◽  
Yulu Ma ◽  
Tao Chen ◽  
...  

Abstract The influence of alumina (Al2O3) content and diameter on the viscosity characteristics of the alumina/linear low-density polyethylene (Al2O3/LLDPE) composites was discussed. The composites were fabricated by melt mixing with the two-rotor continuous mixer. The equivalent surface average particle diameter ( d ¯ A {\bar{d}}_{\text{A}} ) of Al2O3 was calculated by the scanning electron microscopic (SEM) images of samples. The steady-state and dynamic rheological measurements were used to study the evolution of viscosity parameters. With the Carreau model fitting to the steady-rate rheological data, zero-shear viscosity η 0, time constant λ, and power law index n of composites were obtained. On this basis, an optimized Carreau model was established by studying the changes of these parameter values. The rheological result presented that the parameter values (η 0, λ, and n) were linearly proportional to the filling content of Al2O3 particles for nano-Al2O3/LLDPE composites. However, these parameters were, respectively, related to d ¯ A {\bar{d}}_{\text{A}} , d ¯ A 2 {\bar{d}}_{\text{A}}^{2} , and d ¯ A 3 {\bar{d}}_{\text{A}}^{3} for micron-Al2O3/LLDPE composites.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianbin Su ◽  
Xin-Di Zhu ◽  
Yong Wang ◽  
Dong Li ◽  
Li-Jun Wang

Abstract Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 27-36
Author(s):  
Mohammed Ghalib Al-Azawy ◽  
Saleem Khalefa Kadhim ◽  
Azzam Sabah Hameed

In order to imitate the atherosclerosis artery disease and determine the key issues, Computational Fluid Dynamics (CFD) is able to play a leading rule in the analysis of flow physics within the clogged arteries, in particular the stenosis artery. The problem of blood flow blockage through the blood vessel has been investigated numerically within a stenosis artery. In this work, a CFD technique was employed to solve the three-dimensional, steady, laminar and non-Newtonian Carreau model blood flow through a stenosis artery using Star-CCM+ software. The shape of stenosis that has been selected is a trapezoidal with two cases (70% and 90% blockage). Shear rate, streamlines, vorticity and importance factor are examined to assess the influence of non-Newtonian model through the test section, the Carreau model was compared with Newtonian model. The clinical significance of the shear rate is reported for the examined cases, observing that the levels of non-Newtonian model are predicted to be higher in the 90% blockage than that observed within the 70%; the same finding as related with the axial velocity and vorticity. The levels of re-circulation areas and vorticity are showed to be enlarged in the Carreau model compared with the case of Newtonian.


2020 ◽  
Vol 317 ◽  
pp. 113991 ◽  
Author(s):  
Mohsan Hassan ◽  
Alibek Issakhov ◽  
Salah Ud-Din Khan ◽  
Mamdouh El Haj Assad ◽  
Ehab Hussein Bani Hani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document