Circadian rhythms of body temperature and periodic arousal in hibernating Zapus princeps

Cryobiology ◽  
1981 ◽  
Vol 18 (1) ◽  
pp. 86 ◽  
Author(s):  
J.A. Cranford
1995 ◽  
Vol 268 (5) ◽  
pp. R1111-R1116 ◽  
Author(s):  
P. Depres-Brummer ◽  
F. Levi ◽  
G. Metzger ◽  
Y. Touitou

In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.


2020 ◽  
Vol 87 (9) ◽  
pp. S251
Author(s):  
Esther Blessing ◽  
Ankit Paresh ◽  
Arleener Turner ◽  
Andrew Varga ◽  
David Rapoport ◽  
...  

1999 ◽  
Vol 277 (3) ◽  
pp. R812-R828 ◽  
Author(s):  
B. Pitrosky ◽  
R. Kirsch ◽  
A. Malan ◽  
E. Mocaer ◽  
P. Pevet

Daily administration of melatonin or S20098, a melatonin agonist, is known to entrain the free-running circadian rhythms of rats. The effects of the duration of administration on entrainment were studied. The animals demonstrated free-running circadian rhythms (running-wheel activity, body temperature, general activity) in constant darkness. Daily infusions of melatonin or S20098 for 1, 8, or 16 h entrained the circadian rhythms to 24 h. Two daily infusions of 1 h (separated by 8 h) entrained the activity peak within the shorter time interval. The entraining properties of melatonin and S20098 were similar and were affected neither by pinealectomy nor by infusion of 1- or 8-h duration. However, with 16-h infusion, less than half of the animals became entrained. Once entrained, the phase angle between the onset of infusion and the rhythms (onset of activity or acrophase of body temperature) increased with the duration of infusion. Before entrainment, the free-running period increased with the duration of infusion, an effect that was not predictable from the phase response curve.


2000 ◽  
Vol 279 (4) ◽  
pp. R1378-R1385 ◽  
Author(s):  
B. Bishop ◽  
G. Silva ◽  
J. Krasney ◽  
A. Salloum ◽  
A. Roberts ◽  
...  

The hypothermic response of rats to only brief (∼2 h) hypoxia has been described previously. The present study analyzes the hypothermic response in rats, as well as level of activity (La), to prolonged (63 h) hypoxia at rat thermoneutral temperature (29°C). Mini Mitter transmitters were implanted in the abdomens of 10 adult Sprague-Dawley rats to continuously record body temperature (Tb) and La. After habituation for 7 days to 29°C and 12:12-h dark-light cycles, 48 h of baseline data were acquired from six control and four experimental rats. The mean Tb for the group oscillated from a nocturnal peak of 38.4 ± 0.18°C (SD) to a diurnal nadir of 36.7 ± 0.15°C. Then the experimental group was switched to 10% O2 in N2. The immediate Tb response, phase I, was a disappearance of circadian rhythm and a fall in Tb to 36.3 ± 0.52°C. In phase II, Tb increased to a peak of 38.7 ± 0.64°C. In phase III, Tb gradually decreased. At reoxygenation at the end of the hypoxic period, phase IV, Tb increased 1.1 ± 0.25°C. Before hypoxia, La decreased 70% from its nocturnal peak to its diurnal nadir and was entrained with Tb. With hypoxia La decreased in phase I to essential quiescence by phase II. La had returned, but only to a low level in phase III, and was devoid of any circadian rhythm. La resumed its circadian rhythm on reoxygenation. We conclude that 63 h of sustained hypoxia 1) completely disrupts the circadian rhythms of both Tb and La throughout the hypoxic exposure, 2) the hypoxia-induced changes in Tb and La are independent of each other and of the circadian clock, and 3) the Tb response to hypoxia at thermoneutrality has several phases and includes both hypothermic and hyperthermic components.


Sign in / Sign up

Export Citation Format

Share Document