Control of cell-cycle timing in early embryos of Caenorhabditis elegans

1985 ◽  
Vol 107 (2) ◽  
pp. 337-354 ◽  
Author(s):  
Einhard Schierenberg ◽  
William B. Wood
2020 ◽  
Vol 10 (10) ◽  
pp. 3719-3728 ◽  
Author(s):  
Celja J. Uebel ◽  
Dana Agbede ◽  
Dylan C. Wallis ◽  
Carolyn M. Phillips

RNA interference is a crucial gene regulatory mechanism in Caenorhabditis elegans. Phase-separated perinuclear germline compartments called Mutator foci are a key element of RNAi, ensuring robust gene silencing and transgenerational epigenetic inheritance. Despite their importance, Mutator foci regulation is not well understood, and observations of Mutator foci have been largely limited to adult hermaphrodite germlines. Here we reveal that punctate Mutator foci arise in the progenitor germ cells of early embryos and persist throughout all larval stages. They are additionally present throughout the male germline and in the cytoplasm of post-meiotic spermatids, suggestive of a role in paternal epigenetic inheritance. In the adult germline, transcriptional inhibition results in a pachytene-specific loss of Mutator foci, indicating that Mutator foci are partially reliant on RNA for their stability. Finally, we demonstrate that Mutator foci intensity is modulated by the stage of the germline cell cycle and specifically, that Mutator foci are brightest and most robust in the mitotic cells, transition zone, and late pachytene of adult germlines. Thus, our data defines several new factors that modulate Mutator foci morphology which may ultimately have implications for efficacy of RNAi in certain cell stages or environments.


2020 ◽  
Author(s):  
Celja J. Uebel ◽  
Dana Agbede ◽  
Dylan C. Wallis ◽  
Carolyn M. Phillips

ABSTRACTRNA interference is a crucial gene regulatory mechanism in Caenorhabditis elegans. Phase-separated perinuclear germline compartments called Mutator foci are a key element of RNAi, ensuring robust gene silencing and transgenerational epigenetic inheritance. Despite their importance, Mutator foci regulation is not well understood, and observations of Mutator foci have been largely limited to adult hermaphrodite germlines. Here we reveal that punctate Mutator foci arise in the progenitor germ cells of early embryos and persist throughout all larval stages. They are additionally present throughout the male germline and in the cytoplasm of post-meiotic spermatids, suggestive of a role in paternal epigenetic inheritance. In the adult germline, transcriptional inhibition results in a pachytene-specific loss of Mutator foci, indicating that Mutator foci are partially reliant on RNA for their stability. Finally, we demonstrate that Mutator foci intensity is modulated by the stage of the germline cell cycle and specifically, that Mutator foci are brightest and most robust in the mitotic cells, transition zone, and late pachytene of adult germlines. Thus, our data defines several new factors that modulate Mutator foci morphology which may ultimately have implications for efficacy of RNAi in certain cell stages or environments.


2006 ◽  
Vol 17 (7) ◽  
pp. 3085-3094 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Peter Schweinsberg ◽  
...  

Caveolin is the major protein component required for the formation of caveolae on the plasma membrane. Here we show that trafficking of Caenorhabditis elegans caveolin-1 (CAV-1) is dynamically regulated during development of the germ line and embryo. In oocytes a CAV-1-green fluorescent protein (GFP) fusion protein is found on the plasma membrane and in large vesicles (CAV-1 bodies). After ovulation and fertilization the CAV-1 bodies fuse with the plasma membrane in a manner reminiscent of cortical granule exocytosis as described in other species. Fusion of CAV-1 bodies with the plasma membrane appears to be regulated by the advancing cell cycle, and not fertilization per se, because fusion can proceed in spe-9 fertilization mutants but is blocked by RNA interference–mediated knockdown of an anaphase-promoting complex component (EMB-27). After exocytosis, most CAV-1-GFP is rapidly endocytosed and degraded within one cell cycle. CAV-1 bodies in oocytes appear to be produced by the Golgi apparatus in an ARF-1–dependent, clathrin-independent, mechanism. Conversely endocytosis and degradation of CAV-1-GFP in embryos requires clathrin, dynamin, and RAB-5. Our results demonstrate that the distribution of CAV-1 is highly dynamic during development and provides new insights into the sorting mechanisms that regulate CAV-1 localization.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Federico Pelisch ◽  
Remi Sonneville ◽  
Ehsan Pourkarimi ◽  
Ana Agostinho ◽  
J. Julian Blow ◽  
...  

10.1038/10100 ◽  
1999 ◽  
Vol 1 (2) ◽  
pp. 127-129 ◽  
Author(s):  
Jochen Scheel ◽  
Jagan Srinivasan ◽  
Ulrike Honnert ◽  
Annemarie Henske ◽  
Teymuras V. Kurzchalia

Author(s):  
Richa Maheshwari ◽  
Mohammad M Rahman ◽  
Daphna Joseph-Strauss ◽  
Orna Cohen-Fix

Abstract Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose down-regulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.


Cell ◽  
1980 ◽  
Vol 19 (3) ◽  
pp. 569-577 ◽  
Author(s):  
J LAUFER ◽  
P BAZZICALUPO ◽  
W WOOD

1992 ◽  
Vol 70 (12) ◽  
pp. 1290-1300 ◽  
Author(s):  
Jacques Paiement ◽  
J. Manuel Dominguez ◽  
Paul-Emil Messier

Fragments of rough endoplasmic reticulum or Golgi complex isolated from normal adult rat liver homogenates were injected into one cell of cleaving two-cell Xenopus laevis embryos and the effects on development were monitored during early cleavage by morphological analysis. Scanning electron microscopy revealed the formation of large cells on the injected side of the embryos. Such large cells were not present in controls and thus were considered to have been formed as a consequence of delayed cleavage. Delay of cleavage was obtained with as little as 1 ng of membrane protein giving a ratio of membrane protein to embryo protein of 1:105. Cytological observations of microinjected embryos confirmed the occurrence of delayed cytokinesis and suggested that nuclear division became asynchronous. Since rough microsomes from proliferating tissues (i.e., livers with primary tumors and livers undergoing regeneration) showed little or no effect on cytokinesis after microinjection into early embryos, we conclude that cytoplasmic membranes may exhibit cell-cycle-specific properties important for normal development.Key words: rough endoplasmic reticulum and Golgi membranes, hepatectomy, hepatocellular carcinoma, cell cycle, membrane transplants, Xenopus embryos, cleavage arrest.


EMBO Reports ◽  
2007 ◽  
Vol 8 (3) ◽  
pp. 279-286 ◽  
Author(s):  
Srividya Vasudevan ◽  
Natalia G Starostina ◽  
Edward T Kipreos

Sign in / Sign up

Export Citation Format

Share Document