scholarly journals The chromatic index of graphs with large maximum degree

1983 ◽  
Vol 47 ◽  
pp. 91-96 ◽  
Author(s):  
Michael J. Plantholt
2013 ◽  
Vol 23 (1) ◽  
pp. 90-101 ◽  
Author(s):  
TOMÁŠ KAISER ◽  
ROSS J. KANG

We consider two graph colouring problems in which edges at distance at most t are given distinct colours, for some fixed positive integer t. We obtain two upper bounds for the distance-t chromatic index, the least number of colours necessary for such a colouring. One is a bound of (2-ε)Δt for graphs of maximum degree at most Δ, where ε is some absolute positive constant independent of t. The other is a bound of O(Δt/log Δ) (as Δ → ∞) for graphs of maximum degree at most Δ and girth at least 2t+1. The first bound is an analogue of Molloy and Reed's bound on the strong chromatic index. The second bound is tight up to a constant multiplicative factor, as certified by a class of graphs of girth at least g, for every fixed g ≥ 3, of arbitrarily large maximum degree Δ, with distance-t chromatic index at least Ω(Δt/log Δ).


2017 ◽  
Vol 27 (1) ◽  
pp. 21-43 ◽  
Author(s):  
HENNING BRUHN ◽  
FELIX JOOS

We prove χ′s(G) ≤ 1.93 Δ(G)2 for graphs of sufficiently large maximum degree where χ′s(G) is the strong chromatic index of G. This improves an old bound of Molloy and Reed. As a by-product, we present a Talagrand-type inequality where we are allowed to exclude unlikely bad outcomes that would otherwise render the inequality unusable.


10.37236/1551 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Niessen

Let $G$ be a simple graph with $3\Delta (G) > |V|$. The Overfull Graph Conjecture states that the chromatic index of $G$ is equal to $\Delta (G)$, if $G$ does not contain an induced overfull subgraph $H$ with $\Delta (H) = \Delta (G)$, and otherwise it is equal to $\Delta (G) +1$. We present an algorithm that determines these subgraphs in $O(n^{5/3}m)$ time, in general, and in $O(n^3)$ time, if $G$ is regular. Moreover, it is shown that $G$ can have at most three of these subgraphs. If $2\Delta (G) \geq |V|$, then $G$ contains at most one of these subgraphs, and our former algorithm for this situation is improved to run in linear time.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.


2019 ◽  
Vol 346 ◽  
pp. 125-133
Author(s):  
João Pedro W. Bernardi ◽  
Murilo V.G. da Silva ◽  
André Luiz P. Guedes ◽  
Leandro M. Zatesko

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


Sign in / Sign up

Export Citation Format

Share Document