scholarly journals Replenished magma chambers: effects of compositional zonation and input rates

1982 ◽  
Vol 57 (2) ◽  
pp. 345-357 ◽  
Author(s):  
Herbert E. Huppert ◽  
J. Stewart Turner ◽  
R. Stephen ◽  
J. Sparks
1989 ◽  
Vol 126 (5) ◽  
pp. 515-547 ◽  
Author(s):  
P. W. Francis ◽  
R. S. J. Sparks ◽  
C. J. Hawkesworth ◽  
R. S. Thorpe ◽  
D. M. Pyle ◽  
...  

AbstractAt least 2000 km3 of relatively uniform dacitic magma have been erupted from the Cerro Galan caldera complex, northwest Argentina. Between 7 and 4 Ma ago several composite volcanoes predominantly of dacitic lava were constructed, and several large high-K dacitic ignimbrites were erupted. 2.2 Ma ago the > 1000km3 Cerro Galan ignimbrite was erupted. The predominant mineral assemblage in the ignimbrites is plagioclase-biotite-quartz-magnetite-ilmenite; the Cerro Galan ignimbrite also contains sanidine. Fe-Ti oxide minerals in the Cerro Galan ignimbrite imply temperatures of 801–816 °C. Plagioclase phenocrysts in the ignimbrites typically have rather homogeneous cores surrounded by complex, often oscillatory zoned, rims. Core compositions show a marked bimodality, with one population consisting of calcic cores surrounded by normally zoned rims, and a second of sodic cores surrounded by reversely zoned rims. The older ignimbrites do not show systematic compositional zonation, but the Cerro Galan ignimbrite exhibits small variations in major elements (66–69% SiO2) and significant variations in Rb, Sr, Ba, Th and other trace elements, consistent with derivation from a weakly zoned magma chamber, in which limited fractional crystallization occurred. The ignimbrites have 87Sr/86Sr = 0.7108–0.7181; 143Nd/144Nd = 0.51215–0.51225, and δ18O = + 10 to + 12.5, consistent with a significant component of relatively non-radiogenic crust with high Rb/Sr and enriched in incompatible elements. Nd model ages for the source region are about 1.24 Ga. 87Sr/86Sr measurements of separated plagioclases indicate that Anrich cores have slightly lower 87Sr/86Sr than less calcic plagioclases, suggesting a small degree of isotopic heterogeniety in different components within the magmas. Pb isotope data for plagioclase show restricted ranges (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb = 18.87–18.92, 15.65–15.69 and 39.06–39.16 respectively), and suggest derivation from Proterozoic crustal material(> 1.5 Ga).Contemporaneous satellite scoria cones and lavas are high-K basalts, basaltic andesites and andesites with SiO2 = 51–57%; K2O = 2–3% and normative plagioclase compositions of An37–48, and may be derived from a mantle source containing both ‘subduction zone’ and ‘within plate’ components. 87Sr/86Sr ranges from 0.7055 to 0.7094 and 143Nd/144Nd from 0.51250 to 0.51290. Variation diagrams such as MgO: SiO2 show two trends, one indicating closed system fractional crystallization and the other crustal contamination. AFC modelling of the open system rocks indicates a parental mantle-derived mafic magma which is itself enriched in K, Rb, Ba, U, Ta/Sm, Ta/Th and Sr, and has 87Sr/86Sr = 0.705–0.706, while the contaminant need not be more radiogenic than the dacitic ignimbrites.The Cerro Galan dacitic magmas are interpreted in terms of a deep and uniform region of the central Andean continental crust repeatedly melted by emplacement of incompatible-element-enriched, mantle-derived mafic magmas, a proportion of which may also have mixed with the dacite magmas. A component of the crustal material had a Proterozoic age. The magmas derived by crustal melting were also enriched in incompatible elements either by crystal/liquid fractionation processes, or by metasomatism of their source regions just prior to magma generation. Much of the crystallization took place in the source region during the melting process or in mid-crustal magma chambers. The magmas may have re-equilibrated at shallow levels prior to eruption, but only limited compositional zonation developed in high-level magma chambers.


GSA Today ◽  
2004 ◽  
Vol 14 (4) ◽  
pp. 4 ◽  
Author(s):  
Allen F. Glazner ◽  
John M. Bartley ◽  
Drew S. Coleman ◽  
Walt Gray ◽  
Ryan Z. Taylor
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 548
Author(s):  
Lia N. Kogarko ◽  
Troels F. D. Nielsen

The Lovozero complex, Kola peninsula, Russia and the Ilímaussaq complex in Southwest Greenland are the largest known layered peralkaline intrusive complexes. Both host world-class deposits rich in REE and other high-tech elements. Both complexes expose spectacular layering with horizons rich in eudialyte group minerals (EGM). We present a detailed study of the composition and cryptic variations in cumulus EGM from Lovozero and a comparison with EGM from Ilímaussaq to further our understanding of peralkaline magma chambers processes. The geochemical signatures of Lovozero and Ilímaussaq EGM are distinct. In Lovozero EGMs are clearly enriched in Na + K, Mn, Ti, Sr and poorer Fe compared to EGM from Ilímaussaq, whereas the contents of ΣREE + Y and Cl are comparable. Ilímaussaq EGMs are depleted in Sr and Eu, which points to plagioclase fractionation and an olivine basaltic parent. The absence of negative Sr and Eu anomalies suggest a melanephelinitic parent for Lovozero. In Lovozero the cumulus EGMs shows decrease in Fe/Mn, Ti, Nb, Sr, Ba and all HREE up the magmatic layering, while REE + Y and Cl contents increase. In Lovozero EGM spectra show only a weak enrichment in LREE relative to HREE. The data demonstrates a systematic stratigraphic variation in major and trace elements compositions of liquidus EGM in the Eudialyte Complex, the latest and uppermost part of Lovozero. The distribution of elements follows a broadly linear trend. Despite intersample variations, the absence of abrupt changes in the trends suggests continuous crystallization and accumulation in the magma chamber. The crystallization was controlled by elemental distribution between EGM and coexisting melt during gravitational accumulation of crystals and/or mushes in a closed system. A different pattern is noted in the Ilimaussaq Complex. The elemental trends have variable steepness up the magmatic succession especially in the uppermost zones of the Complex. The differences between the two complexes are suggested to be related dynamics of the crystallization and accumulation processes in the magma chambers, such as arrival of new liquidus phases and redistributions by mush melts.


2020 ◽  
Vol 105 (6) ◽  
pp. 795-802 ◽  
Author(s):  
Marion Louvel ◽  
Anita Cadoux ◽  
Richard A. Brooker ◽  
Olivier Proux ◽  
Jean-Louis Hazemann

Abstract The volcanic degassing of halogens, and especially of the heavier Br and I, received increased attention over the last 20 years due to their significant effect on atmospheric chemistry, notably the depletion of stratospheric ozone. While the effect of melt composition on halogen diffusion, solubility, or fluid-melt partitioning in crustal magma chambers has been thoroughly studied, structural controls on halogen incorporation in silicate melts remain poorly known, with only few studies available in simplified borosilicate or haplogranite compositions. Here, we demonstrate that high-energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) with a crystal analyzer spectrometer (CAS) is well-suited for the study of Br speciation in natural volcanic glasses which can contain lower Br concentrations than their laboratory analogs. Especially, HERFD-XAS results in sharper and better-resolved XANES and EXAFS features than previously reported and enables detection limits for EXAFS analysis down to 100 ppm when previous studies required Br concentrations above the 1000 ppm level. XANES and EXAFS analyses suggest important structural differences between synthetic haplogranitic glass, where Br is surrounded by Na and next-nearest oxygen neighbors, and natural volcanic glasses of basaltic to rhyodacitic compositions, where Br is incorporated in at least three distinct sites, surrounded by Na, K, or Ca. Similar environments, involving both alkali and alkaline earth metals have already been reported for Cl in Ca-bearing aluminosilicate glass and our study thus underlines that the association of Br with divalent cations (Ca2+) has been underestimated in the past due to the use of simplified laboratory analogs. Overall, similarities in Cl and Br structural environments over a large array of compositions (46–67 wt% SiO2) suggest that melt composition alone may not have a significant effect on halogen degassing and further support the coupled degassing of Cl and Br in volcanic systems.


1977 ◽  
Vol 277 (9) ◽  
pp. 1152-1167 ◽  
Author(s):  
A. B. Thompson ◽  
R. J. Tracy ◽  
P. T. Lyttle ◽  
J. B. Thompson

Sign in / Sign up

Export Citation Format

Share Document