eudialyte group
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 33 (5) ◽  
pp. 537-570
Author(s):  
Harvey E. Belkin ◽  
Ray Macdonald

Abstract. The mineral occurrences, parageneses, textures, and compositions of Zr-bearing accessory minerals in a suite of UK Paleogene granites from Scotland and Northern Ireland are described. Baddeleyite, zirconolite, and zircon, in that sequence, formed in hornblende + biotite granites (type 1) and hedenbergite–fayalite granites (type 2). The peralkaline microgranite (type 3) of Ailsa Craig contains zircon, dalyite, a eudialyte-group mineral, a fibrous phase which is possibly lemoynite, and Zr-bearing aegirine. Hydrothermal zircon is also present in all three granite types and documents the transition from a silicate-melt environment to an incompatible element-rich aqueous-dominated fluid. No textures indicative of inherited zircon were observed. The minerals crystallized in stages from magmatic through late-magmatic to hydrothermal. The zirconolite and eudialyte-group mineral are notably Y+REE-rich (REE signifies rare earth element). The crystallization sequence of the minerals may have been related to the activities of Si and Ca, to melt peralkalinity, and to local disequilibrium.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 982
Author(s):  
Taras L. Panikorovskii ◽  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Ayya V. Bazai ◽  
Sergey M. Aksenov ◽  
...  

The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) and marginal zones enriched in REEs. The detailed study of the chemical composition (294 microprobe analyses) of EGMs from the drill cores of the Mt. Alluaiv-Mt. Kedykvyrpakhk deposits reveal more than 70% Zr-enriched samples. Single-crystal X-ray diffraction (XRD) was performed separately for the Zr-rich (4.17 Zr apfu) core and the REE-rich (0.54 REE apfu) marginal zone. It was found that extra Zr incorporates into the octahedral M1A site, where it replaces Ca, leading to the symmetry lowering from R3¯m to R32. We demonstrated that the incorporation of extra Zr into EGMs makes the calculation of the eudialyte formula on the basis of Si + Al + Zr + Ti + Hf + Nb + Ta + W = 29 apfu inappropriate.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 548
Author(s):  
Lia N. Kogarko ◽  
Troels F. D. Nielsen

The Lovozero complex, Kola peninsula, Russia and the Ilímaussaq complex in Southwest Greenland are the largest known layered peralkaline intrusive complexes. Both host world-class deposits rich in REE and other high-tech elements. Both complexes expose spectacular layering with horizons rich in eudialyte group minerals (EGM). We present a detailed study of the composition and cryptic variations in cumulus EGM from Lovozero and a comparison with EGM from Ilímaussaq to further our understanding of peralkaline magma chambers processes. The geochemical signatures of Lovozero and Ilímaussaq EGM are distinct. In Lovozero EGMs are clearly enriched in Na + K, Mn, Ti, Sr and poorer Fe compared to EGM from Ilímaussaq, whereas the contents of ΣREE + Y and Cl are comparable. Ilímaussaq EGMs are depleted in Sr and Eu, which points to plagioclase fractionation and an olivine basaltic parent. The absence of negative Sr and Eu anomalies suggest a melanephelinitic parent for Lovozero. In Lovozero the cumulus EGMs shows decrease in Fe/Mn, Ti, Nb, Sr, Ba and all HREE up the magmatic layering, while REE + Y and Cl contents increase. In Lovozero EGM spectra show only a weak enrichment in LREE relative to HREE. The data demonstrates a systematic stratigraphic variation in major and trace elements compositions of liquidus EGM in the Eudialyte Complex, the latest and uppermost part of Lovozero. The distribution of elements follows a broadly linear trend. Despite intersample variations, the absence of abrupt changes in the trends suggests continuous crystallization and accumulation in the magma chamber. The crystallization was controlled by elemental distribution between EGM and coexisting melt during gravitational accumulation of crystals and/or mushes in a closed system. A different pattern is noted in the Ilimaussaq Complex. The elemental trends have variable steepness up the magmatic succession especially in the uppermost zones of the Complex. The differences between the two complexes are suggested to be related dynamics of the crystallization and accumulation processes in the magma chambers, such as arrival of new liquidus phases and redistributions by mush melts.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1070
Author(s):  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Taras L. Panikorovskii ◽  
Ayya V. Bazai ◽  
Victor N. Yakovenchuk

The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at the top), leucocratic nepheline syenite (foyaite), foidolite (urtite). The upper part of the massif (the Eudialyte complex) is indistinctly layered, and lujavrite enriched with eudialyte-group minerals (EGM) prevails there. In this article, we present the results of a study of the chemical composition and petrography of more than 400 samples of the EGM from the main types of rock of the Lovozero massif. In all types of rock, the EGM form at the late magmatic stage later than alkaline clinopyroxenes and amphiboles or simultaneously with it. When the crystallization of pyroxenes and EGM is simultaneous, the content of ferrous iron in the EGM composition increases. The Mn/Fe ratio in the EGM increases during fractional crystallization from lujavrite to foyaite and urtite. The same process leads to an increase in the modal content of EGM in the foyaite of the Layered complex and to the appearance of primary minerals of the lovozerite group in the foyaite of the Eudialyte complex.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1062
Author(s):  
Yuliya D. Gritsenko ◽  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitry A. Varlamov ◽  
...  

The new eudialyte-group mineral, odikhinchaite, was discovered in a peralkaline pegmatite vein hosted by melteigite at the Odikhincha ultrabasic alkaline–carbonatite intrusion, Taimyr Peninsula, Krasnoyarsk Krai, Russia. Associated minerals are orthoclase, albite, aegirine, cancrinite, ancylite-(Ce), catapleiite, and wadeite. Odikhinchaite occurs as dense rosette-like aggregates up to 11 mm across, consisting of split lamellar individuals. The mineral is translucent to transparent, deep purple, with vitreous luster. Odikhinchaite is brittle, with uneven fracture; distinct cleavage on (001) is observed. Hardness determined by the micro-indentation method is equal to 430 kgf/mm2; the Mohs hardness is 5. D(meas.) is 2.97(1) g·cm−3, D(calc.) is 3.04 g·cm–3. Odikhinchaite is optically uniaxial (–), ω = 1.638(2), ε = 1.630(2). The IR spectrum shows the presence of the IVMn2+O4 polyhedra, H2O molecules and CO32– anions. The chemical composition is (electron microprobe, H2O determined by the modified Penfield method, CO2 determined by selection sorption of gaseous annealing products; wt%): Na2O 9.25, K2O 0.59, CaO 12.77, MnO 5.49, FeO 0.75, MgO 0.24, La2O3 0.38, Ce2O3 0.39, Nd2O3 0.15, Al2O3 0.07, SiO2 44.80, ZrO2 11.13, TiO2 0.07, Nb2O5 4.17, Cl 0.69, CO2 0.90, H2O 2.22, –O = Cl –0.16, total 99.72. The crystal structure was solved using single-crystal X-ray diffraction data. Odikhinchaite is trigonal, space group R3m; the unit-cell parameters are: a = 14.2837(2) Å, c = 30.0697(3) Å, V = 5313.04(12) Å3. The new mineral is isostructural with other 12-layered members of the eudialyte group with the space group R3m. Its crystal chemical formula is (Z = 3): {N1(Na2.58Ca0.42)N2[Na2.37Ca0.51(H2O)0.12]N3(Sr2.00K0.45Na0.35REE0.20)N4Na3N5[(H2O)1.8Na1.2]}{ZZr3M1Ca6M2(Mn2.49Fe2+0.51)[M3Nb(OH)1.82O1.18](M4SiOH)[Si3O9]2[Si9O27]2X1[(CO3)0.53Cl0.47]X2[(H2O)0.6(O,F)0.4]XM4(CO3)0.15. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 11.42 (64) (101), 4.309 (41) (205), 3.405 (53) (131), 3.208 (45) (208, 036), 3.167 (44) (217), 2.978 (100) (315), 2.858 (86) (404).


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1036
Author(s):  
Lia Kogarko ◽  
Troels F. D. Nielsen

Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore. Nor is the neighboring Khibiny complex despite a bulk content of 531 ppm of Zr. Khibiny only has interstitial and anhedral EGM. The evolution of the Lovozero magma is recorded in the compositions EGM up through a stratigraphy of 2400 m in Phase II and III of the complex, and distinct in elements like rare earth elements (REE), Sr, Ba, Th, U, Rb, Mn, Fe. The compositional evolution reflects primarily fractional crystallization processes within the magma chamber itself in combination with convective magma flow and layering by precipitation of minerals with different settling velocities. The suggested mechanism for the formation of the EGM deposits is flotation of very small, suspended EGM crystals in the convective magma and concentration below the roof of the magma chamber. Phase III EGM is enriched in total REE (1.3%) and in HREE (Ce/Yt = 8.8) and constitutes a world class deposit of REE in the million tons of Phase III eudialyte lujavrites.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1011
Author(s):  
Michael A.W. Marks ◽  
Hans G.M. Eggenkamp ◽  
Petya Atanasova ◽  
Felicitas Mundel ◽  
Sascha Kümmel ◽  
...  

We review the compositional variation of eudialyte-group minerals (EGM) from the Ilímaussaq complex in South Greenland. Investigated samples cover all major rock units and associated pegmatites and aplites. The whole data set (>3000 analyses from >250 samples) exhibits variable XMn (0.1–0.5), REE (0.2–1.7 apfu), Nb (0.1–0.4), and Cl contents (0.4–1.6 apfu). Most EGM compositions are Na-rich (13–15 apfu), while deviations to Na-rich but also to Na-poor compositions occur because of a combination of primary features (peralkalinity, water activity) and secondary alteration. During magma evolution, REE contents in EGM cores generally increase and reach their highest contents in the most evolved rock units of the complex. This points to the moderate compatibility of REE in EGM and a bulk D (cEGM/cmelt) value of <1 during magma differentiation. Chlorine contents in EGM cores continuously decrease, and are lowest at the rims of individual crystals, suggesting a continuous decrease of Cl activity in the magmas by large-scale EGM and sodalite extraction during the orthomagmatic stage and water enrichment during the late-magmatic stage. The overall variations of XMn across stratigraphy are only minor and likely influenced by the co-crystallization of sodic pyroxene and amphibole (c.f. aegirine, arfvedsonite) and local phase proportions. Similarly, Nb and Ti contents are influenced by co-crystallizing aenigmatite, rinkite, and others. Their presence buffers Ti and Nb contents to rather constant and low values, while their absence may cause variable enrichment on a local scale. Very low Sr contents (<0.1 apfu) in magmatic EGM from Ilímaussaq are related to the basaltic nature of the parental magmas of the complex, as large-scale plagioclase fractionation occurred prior to the formation of the Ilímaussaq magmas, effectively removing Sr from the system. This is in line with very strong negative Eu anomalies in EGM from Ilímaussaq. Consistently, Sr contents in EGM from alkaline complexes, for which foiditic parental magmas are assumed, are much higher and, in such cases, negative Eu anomalies are generally absent.


Sign in / Sign up

Export Citation Format

Share Document