Statistical evaluation of fatigue crack propagation properties including threshold stress intensity factor

1986 ◽  
Vol 24 (6) ◽  
pp. 789-802 ◽  
Author(s):  
Akihiko Ohta ◽  
Isao Soya ◽  
Satoshi Nishijima ◽  
Michio Kosuge
2012 ◽  
Vol 510-511 ◽  
pp. 67-74 ◽  
Author(s):  
M. Sarwar ◽  
E. Ahmad ◽  
T. Manzoor

Fatigue crack growth near-threshold stress intensity factor is affected by the microstructure of the material. A large portion of microstructural influence is due to the change in grain size of the material. Grain size in the dual phase steel was varied and found that the near-threshold stress intensity factor (rKth) increased as the grain size increased. Influence of load ratio nearthreshold fatigue crack propagation was also studied. It was observed that the near-threshold stress intensity range, rKthfor fatigue growth decreased with increasing load ratio.


2001 ◽  
Author(s):  
A. S. Zaki ◽  
H. Ghonem

Abstract A model is developed to predict the number of cycles for fatigue crack initiation from a notch. It is based on the concept that the initiation of a fatigue crack occurs when the accumulated plastic shear deformation in the notch root reaches a critical limit which is defined in terms of the threshold stress intensity factor of the material under consideration. A viscoplastic analysis using unified constitutive equations is employed in order to describe the evolution of the notch plastic zone size as well as the stress and plastic strain distributions within this zone on cycle by cycle basis. This analysis takes into consideration the material s time- and cyclic-dependent characteristics. Experimental verification of the model was carried out using specimens made of AM350, an austenitic steel alloy: A series of crack growth measurements were performed in order to calculate the threshold stress intensity factor which is then used to determine the plastic deformation limit of this alloy. The model is used to calculate the number of cycles to crack initiation which is compared to that obtained experimentally under various loading parameters. The correlation between the model prediction and the experimental results are reported and discussed.


Author(s):  
Douglas A. Scarth ◽  
Gordon K. Shek ◽  
Steven X. Xu

Delayed Hydride Cracking (DHC) in cold-worked Zr-2.5 Nb pressure tubes is of interest to the CANDU industry in the context of the potential to initiate DHC at an in-service flaw. Examples of in-service flaws are fuel bundle scratches, crevice corrosion marks, fuel bundle bearing pad fretting flaws and debris fretting flaws. To date, experience with fretting flaws has been favourable, and crack growth from an in-service fretting flaw has not been detected. However, postulated DHC growth from these flaws can result in severe restrictions on the allowable number of reactor Heatup/Cooldown cycles prior to re-inspection of the flaw, and it is important to reduce any unnecessary conservatism in the evaluation of DHC from the flaw. One method to reduce conservatism is to take credit for the increase in the isothermal threshold stress intensity factor for DHC initiation at a crack, KIH, as the flaw orientation changes from an axial flaw to a circumferential flaw in the pressure tube. This increase in KIH is due to the texture of the pressure tube material. An engineering relation that provides the value of KIH as a function of the orientation of the flaw relative to the axial direction in the pressure tube has been developed as described in this paper. The engineering relation for KIH has been validated against results from DHC initiation experiments on unirradiated cold-worked Zr-2.5 Nb pressure tube material.


Sign in / Sign up

Export Citation Format

Share Document