A limit load criterion to predict crack growth in stainless steel pipes

1992 ◽  
Vol 43 (5) ◽  
pp. 807-813 ◽  
Author(s):  
M.K. Kassir ◽  
C.H. Hofmayer ◽  
K.K. Bandyopadhyay
Author(s):  
Kunio Hasegawa ◽  
Katsumasa Miyazaki ◽  
Gery M. Wilkowski ◽  
Douglas A. Scarth

Piping containing flaws that exceed the Acceptance Standards of Section XI of the ASME Code is evaluated using analytical procedures described in Section XI to determine plant operability for the evaluated time period. Subarticle IWB-3640 of Section XI provides allowable axial and circumferential part-through-wall flaws determined from limit load criteria. ASME Section XI Code Case N-494-3 also provides evaluation procedures based on use of a failure assessment diagram to determine allowable flaw sizes. To understand the allowable flaw sizes determined by the limit load criteria and the failure assessment diagram procedure, anstenitic stainless steel pipes with axial part-through-wall flaws with a wide range of pipe diameters were analyzed. The allowable flaw depth based on limit load from Code Case N-494-3 was determined to be very close to that determined from IWB-3640 of Section XI, when the predicted failure mode is elastic-plastic fracture. It was found that the allowable flaw depths derived from the failure assessment diagram procedure of Code Case N-494-3, are lower, but are not significantly different, from those determined from the limit load criteria of IWB-3640. This is due to the relatively high fracture toughness that was used for the austenitic stainless steel.


Author(s):  
Kiminobu Hojo

Abstract This paper summarizes the revised flaw evaluation procedures for cast austenitic stainless steel (CASS) pipe of the Japan Society of Mechanical Engineers (JSME) rules on fitness for service (FFS) in 2018 addenda. The revision includes the introduction of thermal aging degradation models for stressstrain curve and fracture resistance (J-R) curve, application of a screening criteria for the fracture evaluation procedure of cast stainless steel pipes, and introduction of a new critical stress parameter for the limit load evaluation method of a shallow flaw with a flaw depth to thickness ratio of less than or equal to 0.5. These revisions are based on a large database of specimen tests and several fracture tests of flat plate and large pipe models using thermally aged material, which have already been published.


2006 ◽  
Vol 129 (4) ◽  
pp. 737-743 ◽  
Author(s):  
L. Satyarnarayan ◽  
D. M. Pukazhendhi ◽  
Krishnan Balasubramaniam ◽  
C. V. Krishnamurthy ◽  
D. S. Ramachandra Murthy

This paper reports experimental sizing of fatigue crack profiles that are initiated from artificially made circumferential starter notches in stainless steel pipes of 169mm outer diameter and 14.33mm thickness, which were subjected to cyclic bending loads in a four point bending load arrangement using two nondestractive evaluation (NDE) methods: (a) phased array ultrasonic technique and (b) alternating current potential drop technique. The crack growth estimated using the two NDE techniques were compared with the beach marks that were present in the fracture surface. A simulation study using the ray tracing method was carried out to model the ultrasonic wave propagation in the test specimen, and the results were compared with the experimental results.


Author(s):  
Kunio Hasegawa ◽  
Katsumasa Miyazaki ◽  
Koichi Saito ◽  
Bostjan Bezensek

Multiple flaws such as stress corrosion cracks are frequently detected in the same welded lines in pipes. If multiple discrete flaws are in close proximity to one another, alignment rules are used to determine whether the flaws should be treated as non-aligned or as coplanar. Alignment rules are provided in fitness-for-service codes, such as ASME, JSME, API 579, BS 7910, etc. However, the criteria of the alignment rules are different among these codes. This paper briefly introduces these flaw alignment rules, and four-point bending tests performed on stainless steel pipes with two non-aligned flaws. The experimental plastic collapse stresses are determined from the collapse loads and compared with collapse stresses calculated from the limit load criteria. The limit loads are obtained for single non-aligned or aligned coplanar flaws in accordance with the alignment rules. On this basis, the conservatism of the alignment rules in the above codes is assessed.


Author(s):  
Kunio Hasegawa ◽  
Hideo Kobayashi

Flaw evaluation for fully-plastic fracture uses the limit load criterion. As stainless steels are high toughness ductile materials, limit load criterion is applicable to stainless steel pipes. When a single circumferential flaw is detected in a stainless steel pipe during in-service inspection, the single flaw is evaluated in accordance with Article EB-4000 in the JSME Code or Appendix C in the ASME Code, Section XI. However, multiple flaws such as stress corrosion cracking are sometimes detected in the same circumferential cress-section in a pipe. If the distance between adjacent flaws is short, the multiple flaws are considered as a single flaw in compliance with combination rules. Failure stress is easily calculated by the equations given by Article EB-4000 or Appendix C. If the two flaws are separated by a large distance, it is not required to combine the two flaws. Each flaw is treated as independent. However, there are no equations for evaluating collapse stress for a pipe containing multiple independent flaws in Article EB-4000 and Appendix C. The present paper focus on a proposal of simple equations for evaluating collapse stresses for pipes containing multiple circumferential part-through wall flaws.


Author(s):  
Fuminori Iwamatsu ◽  
Katsumasa Miyazaki ◽  
Koichi Saito ◽  
Kunio Hasegawa

Fully plastic failure stress for a single circumferential flaw on a pipe is evaluated by the limit load criteria in accordance with Appendix E-8 in the JSME S NA-1-2004 and Appendix C in the ASME Code Section XI. However, multiple flaws such as stress corrosion cracking are frequently detected in the same circumferential cross section in a pipe. Hasegawa had proposed failure stress for pipes with two and three circumferential flaws based on net-stress approach. Authors performed four-point bending tests on stainless steel pipes with two symmetrical circumferential flaws in a past study. It was concluded that the experimental results were in good agreement with the theoretical results. In this study, we performed quasi-static four-point bending tests on stainless steel pipes with three symmetrical circumferential flaws. Each experiment resulted in different fracture behavior. We compared the experimental results with the proposed theoretical method.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a flaw is detected in the stainless steel pipes at nuclear power plants during in-service inspections, the limit load estimation method provided in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the flawed pipe. However, in these current codes, the limit load estimation method is only derived for pipes containing a flaw with uniform depth, although many flaws with complicated shapes, such as stress corrosion cracks, have actually been detected in pipes. In order to evaluate the integrity of the flawed pipes in a more rational way, a limit load estimation method has been proposed by authors considering the complicated circumferential surface flaw in its shape. In this study, failure bending experiments are performed for stainless steel pipes containing a circumferential surface flaw with a complicated asymmetrical shape. The proposed method is verified by comparing with experimental results of failure bending moments obtained in this study and in previous experiments. It is observed that the predicted failure bending moments by the proposed method are consistent with the experimental results, and the proposed method is applicable to estimate the realistic load-carrying capacity of flawed pipes.


Sign in / Sign up

Export Citation Format

Share Document