Constitutive modelling of cyclic plasticity and some implications for the computation of biaxial low cycle fatigue damage

1992 ◽  
Vol 41 (5) ◽  
pp. 753-769 ◽  
Author(s):  
B. Skallerud
2018 ◽  
Vol 165 ◽  
pp. 03002 ◽  
Author(s):  
Ronan J. Devaney ◽  
Heiner Oesterlin ◽  
Padraic E. O’Donoghue ◽  
Sean B. Leen

This paper presents the cyclic plasticity and low cycle fatigue (LCF) damage characterisation of thermally simulated heat affected zone (HAZ) for API 5L X100Q weldments. Microstructures representative of the HAZ for two cooling rates are generated using a Gleeble thermomechanical simulator for manufacture of strain-controlled cyclic plasticity test specimens. The simulated HAZ specimens are subjected to a strain controlled test programme which examines the cyclic effects of strain-range and the tensile response at room temperature. A modified version of the Chaboche rate independent plasticity model, which accounts for early stage damage is implemented to characterise the cyclic plasticity response, including isotropic and kinematic hardening effects. The constitutive parameters are fitted to experimental data using an optimisation procedure developed within a MATLAB code. The measured response of the simulated HAZ specimens is compared to that of the X100Q parent material (PM), and the simulated HAZ is shown to share the early stage fatigue damage behaviour of the PM, but exhibits significantly a higher yield and cyclic strength.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Author(s):  
Xiaozhi Wang ◽  
Joong-Kyoo Kang ◽  
Yooil Kim ◽  
Paul H. Wirsching

There are situations where a marine structure is subjected to stress cycles of such large magnitude that small, but significant, parts of the structural component in question experiences cyclic plasticity. Welded joints are particularly vulnerable because of high local stress concentrations. Fatigue caused by oscillating strain in the plastic range is called “low cycle fatigue”. Cycles to failure are typically below 104. Traditional welded joint S-N curves do not describe the fatigue strength in the low cycle region (< 104 number of cycles). Typical Class Society Rules do not directly address the low cycle fatigue problem. It is therefore the objective of this paper to present a credible fatigue damage prediction method of welded joints in the low cycle fatigue regime.


Author(s):  
Masaki Shiratori ◽  
Yoji Ochi ◽  
Izumi Nakamura ◽  
Akihito Otani

A series of finite element analyses has been carried out in order to investigate the failure behaviors of degraded bent pipes with local thinning against seismic loading. The sensitivity of such parameters as the residual thickness, locations and width of the local thinning to the failure modes such as ovaling and local buckling and to the low cycle fatigue damage has been studied. It has been found that this approach is useful to make a reasonable experimental plan, which has to be carried out under the condition of limited cost and limited period.


2016 ◽  
Vol 258 ◽  
pp. 255-258
Author(s):  
Ulrich Krupp ◽  
Marcus Söker ◽  
Tina Waurischk ◽  
Alexander Giertler ◽  
Benjamin Dönges ◽  
...  

As being used for structural applications, where a high corrosion resistance is required, the fatigue behavior of duplex stainless steels (DSS) is governed by the partition of cyclic plasticity to the two phases, ferrite and austenite, respectively. Under very high cycle fatigue (VHCF) loading conditions, the heterogeneous distribution of crystallographic misorientations between neighboring grains and phases yields to a pronounced scatter in fatigue life, ranging from 1 million to 1 billion cycles for nearly the same stress amplitude. In addition, the relevant damage mechanisms depend strongly on the atmosphere. Stress corrosion cracking in NaCl-containing atmosphere causes a pronounced decrease in the VHCF life. By means of ultrasonic fatigue testing at 20kHz in combination with high resolution scanning electron microscopy, electron back-scattered diffraction (EBSD), focused ion beam milling (FIB) and synchrotron tomography, the microstructure heterogeneities were quantified and correlated with local fatigue damage. It has been shown that the fatigue process is rather complex, involving redistribution of residual stresses and three-dimensional barrier effects of the various interfaces. The application of a 2D/3D finite element model allows a qualitative prediction of the fatigue-damage process in DSS that is controlled by stochastic local microstructure arrangements.


1979 ◽  
Vol 101 (4) ◽  
pp. 321-327
Author(s):  
C. C. Schultz ◽  
H. M. Zien

The results of inelastic finite element analyses of several uniaxial specimens used for low-cycle fatigue and cyclic plasticity testing are presented. The test specimens studied include both hourglass and uniform gage-type geometries. These results indicate that normally used hourglass specimens may significantly underestimate the strain for a given stress. Uniform gage specimens with commonly used length-to-diameter ratios are shown to provide adequate stress-strain data. Two extensively strain-gaged uniform gage specimens were tested to provide data to confirm the acceptability of the inelastic analysis methods.


Sign in / Sign up

Export Citation Format

Share Document